Rybalchenko Volodymyr, Santos-Sacchi Joseph
Department of Surgery (Otolaryngology), Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
J Physiol. 2003 Mar 15;547(Pt 3):873-91. doi: 10.1113/jphysiol.2002.036434. Epub 2003 Jan 31.
Outer hair cells underlie high frequency cochlear amplification in mammals. Fast somatic motility can be driven by voltage-dependent conformational changes in the motor protein, prestin, which resides exclusively within lateral plasma membrane of the cell. Yet, how a voltage-driven motor could contribute to high frequency amplification, despite the low-pass membrane filter of the cell, remains an enigma. The recent identification of prestin's Cl- sensitivity revealed an alternative mechanism in which intracellular Cl- fluctuations near prestin could influence the motor. We report the existence of a stretch-sensitive conductance within the lateral membrane that passes anions and cations and is gated at acoustic rates. The resultant intracellular Cl- oscillations near prestin may drive motor protein transitions, as evidenced by pronounced shifts in prestin's state-probability function along the voltage axis. The sensitivity of prestin's state probability to intracellular Cl- levels betokens a more complicated role for Cl- than a simple extrinsic voltage sensor. Instead, we suggest an allosteric modulation of prestin by Cl- and other anions. Finally, we hypothesize that prestin sensitivity to anion flux through the mechanically activated lateral membrane can provide a driving force that circumvents the membrane's low-pass filter, thus permitting amplification at high acoustic frequencies.
外毛细胞是哺乳动物高频耳蜗放大的基础。快速的体细胞运动可由运动蛋白(prestin)中电压依赖性的构象变化驱动,prestin仅存在于细胞的外侧质膜内。然而,尽管细胞具有低通膜滤波器,但电压驱动的运动蛋白如何促成高频放大仍是一个谜。最近对prestin氯离子敏感性的鉴定揭示了一种替代机制,其中prestin附近的细胞内氯离子波动可能会影响该运动蛋白。我们报告在外侧膜内存在一种对拉伸敏感的电导,它能通透阴离子和阳离子,并以声学速率门控。prestin附近由此产生的细胞内氯离子振荡可能驱动运动蛋白的转变,这可通过prestin的状态概率函数沿电压轴的明显偏移得到证明。prestin的状态概率对细胞内氯离子水平的敏感性表明,氯离子的作用比简单的外在电压传感器更为复杂。相反,我们提出氯离子和其他阴离子对prestin进行变构调节。最后,我们推测prestin对通过机械激活的外侧膜的阴离子通量的敏感性可以提供一种驱动力,绕过膜的低通滤波器,从而实现高声学频率下的放大。