Suppr超能文献

小鼠晚期糖基化终末产物可溶性受体(sRAGE)的纯化与鉴定

Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE).

作者信息

Hanford Lana E, Enghild Jan J, Valnickova Zuzana, Petersen Steen V, Schaefer Lisa M, Schaefer Todd M, Reinhart Todd A, Oury Tim D

机构信息

Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA.

出版信息

J Biol Chem. 2004 Nov 26;279(48):50019-24. doi: 10.1074/jbc.M409782200. Epub 2004 Sep 20.

Abstract

The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface proteins that has been implicated as a progression factor in a number of pathologic conditions from chronic inflammation to cancer to Alzheimer's disease. In such conditions, RAGE acts to facilitate pathogenic processes. Its secreted isoform, soluble RAGE or sRAGE, has the ability to prevent RAGE signaling by acting as a decoy. sRAGE has been used successfully in animal models of a range of diseases to antagonize RAGE-mediated pathologic processes. In humans, sRAGE results from alternative splicing of RAGE mRNA. This study was aimed to determine whether the same holds true for mouse sRAGE and, in addition, to biochemically characterize mouse sRAGE. The biochemical characteristics examined include glycosylation and disulfide patterns. In addition, sRAGE was found to bind heparin, which may mediate its distribution in the extracellular matrix and cell surfaces of tissues. Finally, our data indicated that sRAGE in the mouse is likely produced by carboxyl-terminal truncation, in contrast to the alternative splicing mechanism reported in humans.

摘要

晚期糖基化终末产物受体(RAGE)是细胞表面蛋白免疫球蛋白超家族的成员,在从慢性炎症到癌症再到阿尔茨海默病等多种病理状况中被认为是一种进展因子。在这些情况下,RAGE促进致病过程。其分泌型异构体,可溶性RAGE或sRAGE,具有通过充当诱饵来阻止RAGE信号传导的能力。sRAGE已在一系列疾病的动物模型中成功用于拮抗RAGE介导的病理过程。在人类中,sRAGE是由RAGE mRNA的可变剪接产生的。本研究旨在确定小鼠sRAGE是否也是如此,此外,还要对小鼠sRAGE进行生化特性分析。所检测的生化特性包括糖基化和二硫键模式。此外,发现sRAGE与肝素结合,这可能介导其在组织的细胞外基质和细胞表面中的分布。最后,我们的数据表明,与人类报道的可变剪接机制不同,小鼠中的sRAGE可能是由羧基末端截短产生的。

相似文献

1
Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE).
J Biol Chem. 2004 Nov 26;279(48):50019-24. doi: 10.1074/jbc.M409782200. Epub 2004 Sep 20.
2
Expression and purification of the soluble isoform of human receptor for advanced glycation end products (sRAGE) from Pichia pastoris.
Biochem Biophys Res Commun. 2006 Aug 18;347(1):4-11. doi: 10.1016/j.bbrc.2006.04.077. Epub 2006 Jun 21.
3
Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases.
J Biol Chem. 2008 Dec 19;283(51):35507-16. doi: 10.1074/jbc.M806948200. Epub 2008 Oct 24.
6
Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene.
FASEB J. 2009 Jun;23(6):1766-74. doi: 10.1096/fj.08-117739. Epub 2009 Jan 22.
8
Intrafollicular soluble receptor for advanced glycation end products (sRAGE) and embryo quality in assisted reproduction.
Reprod Biomed Online. 2013 Jan;26(1):62-7. doi: 10.1016/j.rbmo.2012.10.001. Epub 2012 Oct 11.
9
The effect of soluble RAGE on inhibition of angiotensin II-mediated atherosclerosis in apolipoprotein E deficient mice.
PLoS One. 2013 Aug 1;8(8):e69669. doi: 10.1371/journal.pone.0069669. Print 2013.
10
The receptor for advanced glycation end products (RAGE) and the lung.
J Biomed Biotechnol. 2010;2010:917108. doi: 10.1155/2010/917108. Epub 2010 Jan 19.

引用本文的文献

1
Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup.
Front Immunol. 2023 Nov 14;14:1277161. doi: 10.3389/fimmu.2023.1277161. eCollection 2023.
2
Children with single ventricle heart disease have a greater increase in sRAGE after cardiopulmonary bypass.
Perfusion. 2024 Oct;39(7):1314-1322. doi: 10.1177/02676591231189357. Epub 2023 Jul 19.
4
Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration.
Curr Drug Targets. 2022;23(12):1191-1209. doi: 10.2174/1389450123666220610171005.
5
The perplexing role of RAGE in pulmonary fibrosis: causality or casualty?
Ther Adv Respir Dis. 2021 Jan-Dec;15:17534666211016071. doi: 10.1177/17534666211016071.
7
The Immune Tolerance Role of the HMGB1-RAGE Axis.
Cells. 2021 Mar 5;10(3):564. doi: 10.3390/cells10030564.
8
Targeting RAGE to prevent SARS-CoV-2-mediated multiple organ failure: Hypotheses and perspectives.
Life Sci. 2021 May 1;272:119251. doi: 10.1016/j.lfs.2021.119251. Epub 2021 Feb 23.
10
The acute respiratory distress syndrome biomarker pipeline: crippling gaps between discovery and clinical utility.
Transl Res. 2020 Dec;226:105-115. doi: 10.1016/j.trsl.2020.06.010. Epub 2020 Jun 26.

本文引用的文献

1
Use of topical sRAGE in diabetic wounds increases neovascularization and granulation tissue formation.
Ann Plast Surg. 2004 May;52(5):519-21; discussion 522. doi: 10.1097/01.sap.0000122857.49274.8c.
2
S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE).
J Biol Chem. 2004 Feb 13;279(7):5059-65. doi: 10.1074/jbc.M310124200. Epub 2003 Nov 14.
7
Depletion of pulmonary EC-SOD after exposure to hyperoxia.
Am J Physiol Lung Cell Mol Physiol. 2002 Oct;283(4):L777-84. doi: 10.1152/ajplung.00011.2002.
8
N -Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth.
J Neurochem. 2002 Mar;80(6):998-1008. doi: 10.1046/j.0022-3042.2002.00796.x.
10
Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB.
Diabetes. 2001 Dec;50(12):2792-808. doi: 10.2337/diabetes.50.12.2792.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验