Suppr超能文献

蛋白质溶剂可及性的快速准确评估。

Fast accurate evaluation of protein solvent exposure.

作者信息

Zhang Naigong, Zeng Chen, Wingreen Ned S

机构信息

Department of Physics, George Washington University, Washington, DC 20052, USA.

出版信息

Proteins. 2004 Nov 15;57(3):565-76. doi: 10.1002/prot.20191.

Abstract

Protein solvation energies are often taken to be proportional to solvent-accessible surface areas. Computation of these areas is numerically demanding and may become a bottleneck for folding and design applications. Fast graph-based methods, such as dead-end elimination (DEE), become possible if all energies, including solvation energies, are expressed as single-residue and pair-residue terms. To this end, Street and Mayo originated a pair-residue approximation for solvent-accessible surface areas (Street AG, Mayo SL. Pairwise calculation of protein solvent accessible surface areas. Fold Des 1998;3:253-258). The dominant source of error in this method is the overlapping burial of side-chain surfaces in the protein core. Here we report a new pair-residue approximation, which greatly reduces this overlap error by the use of optimized generic side-chains. We have tested the generic-side-chain method for the ten proteins studied by Street and Mayo and for 377 single-domain proteins from the CATH database (Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. CATH-A hierarchic classification of protein domain structures. Structure 1997;5:1093-1108). With little additional cost in computation, the new method consistently reduces error for total areas and residue-by-residue areas by more than a factor of two. For example, the residue-by-residue error (for buried area) is reduced from 7.42 A(2) to 3.70 A(2). This difference translates into a solvation energy difference of approximately 0.2 kcal/mol per residue, amounting to a reduction in root-mean-square energy error of 2 kcal/mol for a 100 residue chain, a potentially critical difference for both protein folding and design applications.

摘要

蛋白质溶剂化能通常被认为与溶剂可及表面积成正比。这些面积的计算在数值上要求较高,可能会成为折叠和设计应用的瓶颈。如果所有能量,包括溶剂化能,都表示为单残基和双残基项,那么基于快速图形的方法,如死端消除(DEE),就变得可行。为此,斯特里特和梅奥提出了一种用于溶剂可及表面积的双残基近似方法(斯特里特AG,梅奥SL。蛋白质溶剂可及表面积的成对计算。折叠设计1998;3:253 - 258)。该方法中主要的误差来源是蛋白质核心中侧链表面的重叠掩埋。在此,我们报告一种新的双残基近似方法,它通过使用优化的通用侧链大大减少了这种重叠误差。我们已经对斯特里特和梅奥研究的十种蛋白质以及来自CATH数据库的377个单结构域蛋白质测试了通用侧链方法(奥伦戈CA,米奇AD,琼斯S,琼斯DT,斯温德尔斯MB,桑顿JM。CATH - 蛋白质结构域结构的层次分类。结构1997;5:1093 - 1108)。在计算成本几乎没有额外增加的情况下,新方法始终将总面积和逐个残基面积的误差降低了两倍多。例如,逐个残基的误差(对于掩埋面积)从7.42 Ų降至3.70 Ų。这种差异转化为每个残基约0.2千卡/摩尔的溶剂化能差异,对于一条100个残基的链,这意味着均方根能量误差降低了2千卡/摩尔,这对于蛋白质折叠和设计应用来说可能是一个关键差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验