Wechsler Harry, Duric Zoran, Li Fayin, Cherkassky Vladimir
Department of Computer Science, George Mason University, Fairfax, VA 22030-4444, USA.
IEEE Trans Pattern Anal Mach Intell. 2004 Apr;26(4):466-78. doi: 10.1109/TPAMI.2004.1265862.
This paper describes a novel application of Statistical Learning Theory (SLT) to single motion estimation and tracking. The problem of motion estimation can be related to statistical model selection, where the goal is to select one (correct) motion model from several possible motion models, given finite noisy samples. SLT, also known as Vapnik-Chervonenkis (VC), theory provides analytic generalization bounds for model selection, which have been used successfully for practical model selection. This paper describes a successful application of an SLT-based model selection approach to the challenging problem of estimating optimal motion models from small data sets of image measurements (flow). We present results of experiments on both synthetic and real image sequences for motion interpolation and extrapolation; these results demonstrate the feasibility and strength of our approach. Our experimental results show that for motion estimation applications, SLT-based model selection compares favorably against alternative model selection methods, such as the Akaike's fpe, Schwartz' criterion (sc), Generalized Cross-Validation (gcv), and Shibata's Model Selector (sms). The paper also shows how to address the aperture problem using SLT-based model selection for penalized linear (ridge regression) formulation.
本文描述了统计学习理论(SLT)在单运动估计与跟踪中的一种新应用。运动估计问题可与统计模型选择相关联,其目标是在给定有限噪声样本的情况下,从多个可能的运动模型中选择一个(正确的)运动模型。统计学习理论,也称为瓦普尼克-切尔沃年基斯(VC)理论,为模型选择提供了分析性泛化界限,这些界限已成功用于实际的模型选择。本文描述了一种基于统计学习理论的模型选择方法在从图像测量(流)的小数据集估计最优运动模型这一具有挑战性问题上的成功应用。我们展示了在合成图像序列和真实图像序列上进行运动插值和外推的实验结果;这些结果证明了我们方法的可行性和优势。我们的实验结果表明,对于运动估计应用,基于统计学习理论的模型选择与其他模型选择方法相比具有优势,如赤池信息准则(Akaike's fpe)、施瓦茨准则(sc)、广义交叉验证(gcv)和柴田模型选择器(sms)。本文还展示了如何使用基于统计学习理论的模型选择来解决惩罚线性(岭回归)公式中的孔径问题。