Suppr超能文献

一种用于不精确图匹配的特征空间投影聚类方法。

An eigenspace projection clustering method for inexact graph matching.

作者信息

Caelli Terry, Kosinov Serhiy

机构信息

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2H1.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Apr;26(4):515-9. doi: 10.1109/TPAMI.2004.1265866.

Abstract

In this paper, we show how inexact graph matching (that is, the correspondence between sets of vertices of pairs of graphs) can be solved using the renormalization of projections of the vertices (as defined in this case by their connectivities) into the joint eigenspace of a pair of graphs and a form of relational clustering. An important feature of this eigenspace renormalization projection clustering (EPC) method is its ability to match graphs with different number of vertices. Shock graph-based shape matching is used to illustrate the model and a more objective method for evaluating the approach using random graphs is explored with encouraging results.

摘要

在本文中,我们展示了如何使用顶点投影的重整化(在这种情况下由它们的连通性定义)到一对图的联合特征空间以及一种关系聚类形式来解决不精确的图匹配问题(即图对顶点集之间的对应关系)。这种特征空间重整化投影聚类(EPC)方法的一个重要特性是它能够匹配具有不同顶点数量的图。基于冲击图的形状匹配被用于阐释该模型,并且探索了一种使用随机图来评估该方法的更客观的方法,结果令人鼓舞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验