Suppr超能文献

用于解决基于图像的可见性的二叉空间划分图像。

Binary-space-partitioned images for resolving image-based visibility.

作者信息

Fu Chi-Wing, Wong Tien-Tsin, Tong Wai-Shun, Tang Chi-Keung, Hanson Andrew J

机构信息

Computer Science Department, Indiana University, Bloomington, IN 47405, USA.

出版信息

IEEE Trans Vis Comput Graph. 2004 Jan-Feb;10(1):58-71. doi: 10.1109/TVCG.2004.1260758.

Abstract

We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.

摘要

我们提出了一种用于3D可见性排序的新颖二维表示方法——二叉空间划分图像(BSPI),以加速基于图像的实时渲染。BSPI是3D BSP树的一种高效二维实现,BSP树在计算机图形学中常用于对时间要求严格的可见性排序。由于BSP树的整体结构编码在BSPI中,遍历BSPI相当于遍历相应的BSP树。BSPI通过逐个三角形而非逐个像素地扭曲参考图像,在二维图像空间中高效且准确地执行可见性排序。当场景的遮挡部分在新视点变得可见时,可以组合多个BSPI来解决“反遮挡”问题。我们的方法具有高度自动化,包括一个张量投票预处理步骤,该步骤为BSPI生成候选图像分割线,通过剔除异常值来过滤嘈杂的输入数据,并插值缺失信息。我们的系统已应用于各种真实数据,包括立体图像、运动图像和距离图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验