Blades Arthur T, Peschke Michael, Verkerk Udo H, Kebarle Paul
Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
J Am Chem Soc. 2004 Sep 29;126(38):11995-2003. doi: 10.1021/ja030663r.
The sequential hydration energies and entropies with up to four water molecules were obtained for MXM(+) = NaFNa(+), NaClNa(+), NaBrNa(+), NaINa(+), NaNO(2)Na(+), NaNO(3)Na(+), KFK(+), KBrK(+), KIK(+), RbIRb(+), CsICs(+), NH(4)BrNH(4)(+), and NH(4)INH(4)(+) from the hydration equilibria in the gas phase with a reaction chamber attached to a mass spectrometer. The MXM(+) ions as well as (MX)(m)M(+) and higher charged ions such as (MX)(m)M(2)(2+) were obtained with electrospray. The observed trends of the hydration energies of MXM(+) with changing positive ion M(+) or the negative ion X(-) could be rationalized on the basis of simple electrostatics. The most important contribution to the (MXM-OH(2))(+) bond is the interaction of the permanent and induced dipole of water with the positive charge of the nearest-neighbor M(+) ion. The repulsion due to the water dipole and the more distant X(-) has a much smaller effect. Therefore, the bonding in (MXM-OH(2))(+) for constant M and different X ions changes very little. Similarly, for constant X and different M, the bonding follows the hydration energy trends observed for the naked M(+) ions. The sequential hydration bond energies for MXM(H(2)O)(n)(+) decrease with n in pairs, where for n = 1 and n = 2 the values are almost equal, followed by a drop in the values for n = 3 and n = 4, that again are almost equal. The hydration energies of (MX)(m)M(+) decrease with m. The mass spectra with NaCl, obtained with electrospray and observed in the absence of water vapor, show peaks of unusually high intensities (magic numbers) at m = 4, 13, and 22. Experiments with variable electrical potentials in the mass spectrometer interface showed that some but not all of the ion intensity differentiation leading to magic numbers is due to collision-induced decomposition of higher mass M(MX)(m)(+) and M(2)(MX)(m)(2+) ions in the interface. However, considerable magic character is retained in the absence of excitation. This result indicates that the magic ions are present also in the saturated solution of the droplets produced by electrospray and are thus representative of particularly stable nanocrystals in the saturated solution. Hydration equilibrium determinations in the gas phase demonstrated weaker hydration of the magic ion (NaCl)(4)Na(+).
通过将带有反应室的质谱仪连接到气相中的水合平衡,获得了 MXM(+) = NaFNa(+)、NaClNa(+)、NaBrNa(+)、NaINa(+)、NaNO₂Na(+)、NaNO₃Na(+)、KFK(+)、KBrK(+)、KIK(+)、RbIRb(+)、CsICs(+)、NH₄BrNH₄(+) 和 NH₄INH₄(+) 与多达四个水分子的连续水合能和熵。通过电喷雾获得了 MXM(+) 离子以及 (MX)ₘM(+) 和更高电荷的离子,如 (MX)ₘM₂²⁺。基于简单的静电学原理,可以合理解释 MXM(+) 的水合能随正离子 M(+) 或负离子 X(-) 变化的观察趋势。对 (MXM - OH₂)(+) 键最重要的贡献是水的永久偶极和诱导偶极与最近邻 M(+) 离子正电荷的相互作用。水偶极与更远的 X(-) 之间的排斥作用要小得多。因此,对于恒定的 M 和不同的 X 离子,(MXM - OH₂)(+) 中的键合变化很小。同样,对于恒定的 X 和不同的 M,键合遵循裸 M(+) 离子观察到的水合能趋势。MXM(H₂O)ₙ(+) 的连续水合键能随 n 成对降低,其中 n = 1 和 n = 2 时的值几乎相等,随后 n = 3 和 n = 4 时的值下降,这两个值再次几乎相等。(MX)ₘM(+) 的水合能随 m 降低。用电喷雾获得并在无水蒸气条件下观察到的 NaCl 的质谱在 m = 4、13 和 22 处显示出异常高强度的峰(幻数)。在质谱仪接口中进行的可变电势实验表明,导致幻数的部分但不是全部离子强度差异是由于接口中较高质量的 M(MX)ₘ(+) 和 M₂(MX)ₘ²⁺ 离子的碰撞诱导分解。然而,在没有激发的情况下仍保留了相当大的幻数特征。该结果表明,幻数离子也存在于电喷雾产生的液滴的饱和溶液中,因此代表了饱和溶液中特别稳定的纳米晶体。气相中的水合平衡测定表明幻数离子 (NaCl)₄Na(+) 的水合较弱。