Mejia-Rodriguez Rosario, Chong Daesung, Reibenspies Joseph H, Soriaga Manuel P, Darensbourg Marcetta Y
Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
J Am Chem Soc. 2004 Sep 29;126(38):12004-14. doi: 10.1021/ja039394v.
As functional biomimics of the hydrogen-producing capability of the dinuclear active site in [Fe]H(2)ase, the Fe(I)Fe(I) organometallic complexes, (mu-pdt)Fe(CO)(2)PTA, 1-PTA(2), (pdt = SCH(2)CH(2)CH(2)S; PTA = 1,3,5-triaza-7-phosphaadamantane), and (mu-pdt)[Fe(CO)(3)][Fe(CO)(2)PTA], 1-PTA, were synthesized and fully characterized. For comparison to the hydrophobic (mu-pdt)Fe(CO)(2)(PMe(3)) and (mu-H)(mu-pdt)Fe(CO)(2)(PMe(3)) analogues, electrochemical responses of 1-PTA(2) and 1-(PTA.H(+))(2) were recorded in acetonitrile and in acetonitrile/water mixtures in the absence and presence of acetic acid. The production of H(2) and the dependence of current on acid concentration indicated that the complexes were solution electrocatalysts that decreased over-voltage for H(+) reduction from HOAc in CH(3)CN by up to 600 mV. The most effective electrocatalyst is the asymmetric 1-PTA species, which promotes H(2) formation from HOAc (pK(a) in CH(3)CN = 22.6) at -1.4 V in CH(3)CN/H(2)O mixtures at the Fe(0)Fe(I) redox level. Functionalization of the PTA ligand via N-protonation or N-methylation, generating (mu-pdt)Fe(CO)(2)(PTA-H(+)), 1-(PTA.H(+))(2), and (mu-pdt)Fe(CO)(2)(PTA-CH(3)(+)), 1-(PTA-Me(+))(2), provided no obvious advantages for the electrocatalysis because in both cases the parent complex is reclaimed during one cycle under the electrochemical conditions and H(2) production catalysis develops from the neutral species. The order of proton/electron addition to the catalyst, i.e., the electrochemical mechanism, is dependent on the extent of P-donor ligand substitution and on the acid strength. Cyclic voltammetric curve-crossing phenomena was observed and analyzed in terms of the possible presence of an eta(2)-H(2)-Fe(II)Fe(I) species, derived from reduction of the Fe(I)Fe(I) parent complex to Fe(0)Fe(I) followed by uptake of two protons in an ECCE mechanism.
作为对[Fe]H(2)ase中双核活性位点产氢能力的功能仿生模拟物,合成并全面表征了Fe(I)Fe(I)有机金属配合物(μ-pdt)Fe(CO)(2)PTA,即1-PTA(2),(pdt = SCH(2)CH(2)CH(2)S;PTA = 1,3,5-三氮杂-7-磷杂金刚烷),以及(μ-pdt)[Fe(CO)(3)][Fe(CO)(2)PTA],即1-PTA。为了与疏水性的(μ-pdt)Fe(CO)(2)(PMe(3))和[(μ-H)(μ-pdt)Fe(CO)(2)(PMe(3))]⁺类似物进行比较,在不存在和存在乙酸的情况下,在乙腈以及乙腈/水混合物中记录了1-PTA(2)和1-(PTA·H⁺)(2)的电化学响应。氢气的产生以及电流对酸浓度的依赖性表明,这些配合物是溶液电催化剂,可将CH(3)CN中HOAc的H⁺还原过电位降低多达600 mV。最有效的电催化剂是不对称的1-PTA物种,它在Fe(0)Fe(I)氧化还原水平下,于CH(3)CN/H(2)O混合物中-1.4 V时促进HOAc(在CH(3)CN中的pK(a)=22.6)形成H(2)。通过N-质子化或N-甲基化对PTA配体进行功能化,生成(μ-pdt)Fe(CO)(2)(PTA-H⁺),即1-(PTA·H⁺)(2),以及(μ-pdt)Fe(CO)(2)(PTA-CH(3)⁺),即1-(PTA-Me⁺)(2),对于电催化没有明显优势,因为在这两种情况下,母体配合物在电化学条件下的一个循环中都会回收,并且H(2)的产生催化是从中性物种发展而来的。质子/电子添加到催化剂的顺序,即电化学机制,取决于P供体配体取代的程度和酸的强度。观察到了循环伏安曲线交叉现象,并根据可能存在的η(2)-H(2)-Fe(II)Fe(I)物种进行了分析,该物种源自Fe(I)Fe(I)母体配合物还原为Fe(0)Fe(I),随后通过ECCE机制吸收两个质子。