Pandey Indresh Kumar, Agarwal Tashika, Mobin Shaikh M, Stein Matthias, Kaur-Ghumaan Sandeep
Department of Chemistry, University of Delhi, Delhi 110007, India.
Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.
ACS Omega. 2021 Feb 2;6(6):4192-4203. doi: 10.1021/acsomega.0c04901. eCollection 2021 Feb 16.
Hydrogenases are versatile enzymatic catalysts with an unmet hydrogen evolution reactivity (HER) from synthetic bio-inspired systems. The binuclear active site only has one-site reactivity of the distal Fe atom. Here, binuclear complexes [Fe(CO)(μ-Mebdt)(P(4-CHOCH))] and [Fe(CO)(μ-Mebdt)(PPhPy)] are presented, which show electrocatalytic activity in the presence of weak acids as a proton source for the HER. Despite almost identical structural and spectroscopic properties (bond distances and angles from single-crystal X-ray; IR, UV/vis, and NMR), introduction of a nitrogen base atom in the phosphine ligand in markedly changes site reactivity. The bridging benzenedithiolate ligand Mebdt interacts with the terminal ligand's phenyl aromatic rings and stabilizes the reduced states of the catalysts. Although with monodentate phosphine terminal ligands only shows a distal iron atom HER activity by a sequence of electrochemical and protonation steps, the lone pair of pyridine nitrogen in acts as the primary site of protonation. This swaps the iron atom catalytic activity toward the proximal iron for complex . Density-functional theory (DFT) calculations reveal the role of terminal phosphines ligands without/with pendant amines by directing the proton transfer steps. The reactivity of is a thiol-based protonation of a dangling bond in and distal iron hydride mechanism, which may follow either an ECEC or EECC sequence, depending on the choice of acid. The pendant amine in enables a terminal ligand protonation and an ECEC reactivity. The introduction of a terminal nitrogen atom enables the control of site reactivity in a binuclear system.
氢化酶是多功能酶催化剂,在合成生物启发体系中具有未实现的析氢反应活性(HER)。双核活性位点仅具有远端铁原子的单位点反应活性。在此,展示了双核配合物[Fe(CO)(μ-Mebdt)(P(4-CHOCH))]和[Fe(CO)(μ-Mebdt)(PPhPy)],它们在弱酸作为HER质子源的存在下表现出电催化活性。尽管结构和光谱性质几乎相同(单晶X射线的键长和键角;红外、紫外/可见和核磁共振),但在膦配体中引入氮碱基原子会显著改变位点反应活性。桥连苯二硫醇盐配体Mebdt与末端配体的苯基芳环相互作用,并稳定催化剂的还原态。虽然仅通过一系列电化学和质子化步骤,具有单齿膦末端配体的仅显示远端铁原子的HER活性,但中的吡啶氮孤对作为质子化的主要位点。这将配合物的铁原子催化活性从远端铁交换为近端铁。密度泛函理论(DFT)计算揭示了带有/不带有侧链胺的末端膦配体通过指导质子转移步骤所起的作用。的反应活性是基于硫醇的悬空键质子化和远端铁氢化物机制,这可能遵循ECEC或EECC序列,具体取决于酸的选择。中的侧链胺实现了末端配体质子化和ECEC反应活性。引入末端氮原子能够控制双核体系中的位点反应活性。