Suzuki Yoshiyuki
Institute of Molecular Evolutionary Genetics and Department of Biology, The Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802, USA.
J Mol Evol. 2004 Jul;59(1):11-9. doi: 10.1007/s00239-004-2599-6.
Inferring positive selection at single amino acid sites is of particular importance for studying evolutionary mechanisms of a protein. For this purpose, Suzuki and Gojobori (1999) developed a method (SG method) for comparing the rates of synonymous and nonsynonymous substitutions at each codon site in a protein-coding nucleotide sequence, using ancestral codons at interior nodes of the phylogenetic tree as inferred by the maximum parsimony method. In the SG method, however, selective neutrality of nucleotide substitutions cannot be tested at codon sites, where only termination codons are inferred at any interior node or the number of equally parsimonious inferences of ancestral codons at all interior nodes exceeds 10,000. Here I present a modified SG method which is free from these problems. Specifically, I use the distance-based Bayesian method for inferring the single most likely ancestral codon from 61 sense codons at each interior node. In the computer simulation and real data analysis, the modified SG method showed a higher overall efficiency of detecting positive selection than the original SG method, particularly at highly polymorphic codon sites. These results indicate that the modified SG method is useful for inferring positive selection at codon sites where neutrality cannot be tested by the original SG method. I also discuss that the p-distance is preferable to the number of synonymous substitutions for inferring the phylogenetic tree in the SG method, and present a maximum likelihood method for detecting positive selection at single amino acid sites, which produced reasonable results in the real data analysis.
推断单个氨基酸位点的正选择对于研究蛋白质的进化机制尤为重要。为此,铃木和五条博(1999年)开发了一种方法(SG方法),用于比较蛋白质编码核苷酸序列中每个密码子位点的同义替换率和非同义替换率,使用通过最大简约法推断的系统发育树内部节点的祖先密码子。然而,在SG方法中,在密码子位点无法测试核苷酸替换的选择中性,这些位点在任何内部节点仅推断出终止密码子,或者所有内部节点祖先密码子的同等简约推断数量超过10000。在此,我提出一种改进的SG方法,该方法不存在这些问题。具体而言,我使用基于距离的贝叶斯方法从每个内部节点的61个有义密码子中推断出最可能的单个祖先密码子。在计算机模拟和实际数据分析中,改进的SG方法在检测正选择方面显示出比原始SG方法更高的整体效率,特别是在高度多态的密码子位点。这些结果表明,改进的SG方法对于推断原始SG方法无法测试中性的密码子位点的正选择是有用的。我还讨论了在SG方法中,p距离比同义替换数更适合用于推断系统发育树,并提出了一种用于检测单个氨基酸位点正选择的最大似然方法,该方法在实际数据分析中产生了合理的结果。