Suppr超能文献

基于自适应评判神经网络的三指夹爪物体抓取控制

Adaptive critic neural network-based object grasping control using a three-finger gripper.

作者信息

Jagannathan S, Galan Gustavo

机构信息

Department of Electrical and Computer Enginering, The University of Missouri-Rolla, Rolla, MO 65401, USA.

出版信息

IEEE Trans Neural Netw. 2004 Mar;15(2):395-407. doi: 10.1109/TNN.2004.824407.

Abstract

Grasping of objects has been a challenging task for robots. The complex grasping task can be defined as object contact control and manipulation subtasks. In this paper, object contact control subtask is defined as the ability to follow a trajectory accurately by the fingers of a gripper. The object manipulation subtask is defined in terms of maintaining a predefined applied force by the fingers on the object. A sophisticated controller is necessary since the process of grasping an object without a priori knowledge of the object's size, texture, softness, gripper, and contact dynamics is rather difficult. Moreover, the object has to be secured accurately and considerably fast without damaging it. Since the gripper, contact dynamics, and the object properties are not typically known beforehand, an adaptive critic neural network (NN)-based hybrid position/force control scheme is introduced. The feedforward action generating NN in the adaptive critic NN controller compensates the nonlinear gripper and contact dynamics. The learning of the action generating NN is performed on-line based on a critic NN output signal. The controller ensures that a three-finger gripper tracks a desired trajectory while applying desired forces on the object for manipulation. Novel NN weight tuning updates are derived for the action generating and critic NNs so that Lyapunov-based stability analysis can be shown. Simulation results demonstrate that the proposed scheme successfully allows fingers of a gripper to secure objects without the knowledge of the underlying gripper and contact dynamics of the object compared to conventional schemes.

摘要

对于机器人来说,抓取物体一直是一项具有挑战性的任务。复杂的抓取任务可定义为物体接触控制和操作子任务。在本文中,物体接触控制子任务被定义为夹具手指精确跟踪轨迹的能力。物体操作子任务是根据手指在物体上保持预定义作用力来定义的。由于在没有关于物体尺寸、质地、柔软度、夹具和接触动力学的先验知识的情况下抓取物体的过程相当困难,因此需要一个复杂的控制器。此外,必须在不损坏物体的情况下准确且相当快速地固定物体。由于夹具、接触动力学和物体特性通常事先未知,因此引入了一种基于自适应评判神经网络(NN)的混合位置/力控制方案。自适应评判神经网络控制器中的前馈动作生成神经网络补偿了非线性夹具和接触动力学。动作生成神经网络的学习基于评判神经网络输出信号在线进行。该控制器确保三指夹具在对物体施加期望力以进行操作时跟踪期望轨迹。为动作生成神经网络和评判神经网络推导了新颖的神经网络权重调整更新,以便能够进行基于李雅普诺夫的稳定性分析。仿真结果表明,与传统方案相比,所提出的方案成功地使夹具的手指在不知道物体的底层夹具和接触动力学的情况下固定物体。

相似文献

1
Adaptive critic neural network-based object grasping control using a three-finger gripper.
IEEE Trans Neural Netw. 2004 Mar;15(2):395-407. doi: 10.1109/TNN.2004.824407.
2
Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.
IEEE Trans Neural Netw. 2008 Dec;19(12):2073-87. doi: 10.1109/TNN.2008.2003295.
3
A suite of robust controllers for the manipulation of microscale objects.
IEEE Trans Syst Man Cybern B Cybern. 2008 Feb;38(1):113-25. doi: 10.1109/TSMCB.2007.909943.
5
Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints.
IEEE Trans Syst Man Cybern B Cybern. 2007 Apr;37(2):425-36. doi: 10.1109/tsmcb.2006.883869.
6
Adaptive Grasping of Moving Objects through Tactile Sensing.
Sensors (Basel). 2021 Dec 14;21(24):8339. doi: 10.3390/s21248339.
7
Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks.
IEEE Trans Syst Man Cybern B Cybern. 2008 Aug;38(4):994-1001. doi: 10.1109/TSMCB.2008.926607.
8
Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects.
Soft Robot. 2018 Aug;5(4):452-465. doi: 10.1089/soro.2017.0121. Epub 2018 May 9.
9
Neural network control of multifingered robot hands using visual feedback.
IEEE Trans Neural Netw. 2009 May;20(5):758-67. doi: 10.1109/TNN.2008.2012127. Epub 2009 Apr 14.
10
Comparison of Different Technologies for Soft Robotics Grippers.
Sensors (Basel). 2021 May 8;21(9):3253. doi: 10.3390/s21093253.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验