Bhaniramka Praveen, Wenger Rephael, Crawfis Roger
Silicon Graphics, Mountain View, CA, USA.
IEEE Trans Vis Comput Graph. 2004 Mar-Apr;10(2):130-41. doi: 10.1109/TVCG.2004.1260765.
We present an algorithm for constructing isosurfaces in any dimension. The input to the algorithm is a set of scalar values in a d-dimensional regular grid of (topological) hypercubes. The output is a set of (d-1)-dimensional simplices forming a piecewise linear approximation to the isosurface. The algorithm constructs the isosurface piecewise within each hypercube in the grid using the convex hull of an appropriate set of points. We prove that our algorithm correctly produces a triangulation of a (d-1)-manifold with boundary. In dimensions three and four, lookup tables with 2(8) and 2(16) entries, respectively, can be used to speed the algorithm's running time. In three dimensions, this gives the popular Marching Cubes algorithm. We discuss applications of four-dimensional isosurface construction to time varying isosurfaces, interval volumes, and morphing.
我们提出了一种在任意维度构建等值面的算法。该算法的输入是一个由(拓扑)超立方体组成的d维规则网格中的一组标量值。输出是一组(d - 1)维单纯形,它们构成了对等值面的分段线性近似。该算法使用一组适当点的凸包在网格中的每个超立方体内分段构建等值面。我们证明我们的算法能正确生成一个带边界的(d - 1)维流形的三角剖分。在三维和四维中,分别具有2(8)和2(16)个条目的查找表可用于加快算法的运行时间。在三维中,这就得到了广为人知的移动立方体算法。我们讨论了四维等值面构建在随时间变化的等值面、区间体积和变形方面的应用。