Mackey Andrew T, Sproul Lisa R, Sontag Christopher A, Satterwhite Lisa L, Correia John J, Gilbert Susan P
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
J Biol Chem. 2004 Dec 3;279(49):51354-61. doi: 10.1074/jbc.M406268200. Epub 2004 Sep 21.
Kar3 is a minus-end-directed microtubule motor that is implicated in meiotic and mitotic spindle function in Saccharomyces cerevisiae. To date, the only truncated protein of Kar3 that has been reported to promote unidirectional movement in vitro is GSTKar3. This motor contains an NH2-terminal glutathione S-transferase (GST) tag followed by the Kar3 sequence that is predicted to form an extended alpha-helical coiled-coil. The alpha-helical domain leads into the neck linker and COOH-terminal motor domain. Kar3 does not homodimerize with itself but forms a heterodimer with either Cik1 or Vik1, both of which are non-motor polypeptides. We evaluated the microtubule-GSTKar3 complex in comparison to the microtubule-Kar3 motor domain complex to determine the distinctive mechanistic features required for GSTKar3 motility. Our results indicate that ATP binding was significantly faster for GSTKar3 than that observed previously for the Kar3 motor domain. In addition, microtubule-activated ADP release resulted in an intermediate that bound ADP weakly in contrast to the Kar3 motor domain, suggesting that after ADP release, the microtubule-GSTKar3 motor binds ATP in preference to ADP. The kinetics also showed that GST-Kar3 readily detached from the microtubule rather than remaining bound for multiple ATP turnovers. These results indicate that the extended alpha-helical domain NH2-terminal to the catalytic core provides the structural transitions in response to the ATPase cycle that are critical for motility and that dimerization is not specifically required. This study provides the foundation to define the mechanistic contributions of Cik1 and Vik1 for Kar3 force generation and function in vivo.
Kar3是一种负端定向微管马达蛋白,参与酿酒酵母减数分裂和有丝分裂纺锤体功能。迄今为止,据报道唯一能在体外促进单向运动的Kar3截短蛋白是GSTKar3。该马达蛋白包含一个NH2端谷胱甘肽S-转移酶(GST)标签,其后是预测会形成延伸α-螺旋卷曲螺旋的Kar3序列。α-螺旋结构域通向颈部连接子和COOH端马达结构域。Kar3不会自身同源二聚化,而是与Cik1或Vik1形成异源二聚体,这两者都是非马达多肽。我们将微管-GSTKar3复合物与微管-Kar3马达结构域复合物进行比较,以确定GSTKar3运动所需的独特机制特征。我们的结果表明,GSTKar3的ATP结合速度比之前观察到的Kar3马达结构域要快得多。此外,微管激活的ADP释放产生了一种与Kar3马达结构域相比与ADP弱结合的中间体,这表明ADP释放后,微管-GSTKar3马达优先结合ATP而非ADP。动力学研究还表明,GST-Kar3很容易从微管上脱离,而不是在多个ATP周转过程中一直结合。这些结果表明,催化核心NH2端的延伸α-螺旋结构域提供了响应ATP酶循环的结构转变,这对运动至关重要,而且二聚化并非特别必要。这项研究为定义Cik1和Vik1对Kar3在体内产生力和发挥功能的机制贡献奠定了基础。