Suppr超能文献

驱动动力蛋白-14 Kar3Vik1 构象变化的 ATP 酶途径。

The ATPase pathway that drives the kinesin-14 Kar3Vik1 powerstroke.

机构信息

Department of Biology and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

出版信息

J Biol Chem. 2012 Oct 26;287(44):36673-82. doi: 10.1074/jbc.M112.395590. Epub 2012 Sep 12.

Abstract

Kar3, a Saccharomyces cerevisiae microtubule minus-end-directed kinesin-14, dimerizes with either Vik1 or Cik1. The C-terminal globular domain of Vik1 exhibits the structure of a kinesin motor domain and binds microtubules independently of Kar3 but lacks a nucleotide binding site. The only known function of Kar3Vik1 is to cross-link parallel microtubules at the spindle poles during mitosis. In contrast, Kar3Cik1 depolymerizes microtubules during mating but cross-links antiparallel microtubules in the spindle overlap zone during mitosis. A recent study showed that Kar3Vik1 binds across adjacent microtubule protofilaments and uses a minus-end-directed powerstroke to drive ATP-dependent motility. The presteady-state experiments presented here extend this study and establish an ATPase model for the powerstroke mechanism. The results incorporated into the model indicate that Kar3Vik1 collides with the microtubule at 2.4 μm(-1) s(-1) through Vik1, promoting microtubule binding by Kar3 followed by ADP release at 14 s(-1). The tight binding of Kar3 to the microtubule destabilizes the Vik1 interaction with the microtubule, positioning Kar3Vik1 for the start of the powerstroke. Rapid ATP binding to Kar3 is associated with rotation of the coiled-coil stalk, and the postpowerstroke ATP hydrolysis at 26 s(-1) is independent of Vik1, providing further evidence that Vik1 rotates with the coiled coil during the powerstroke. Detachment of Kar3Vik1 from the microtubule at 6 s(-1) completes the cycle and allows the motor to return to its initial conformation. The results also reveal key differences in the ATPase cycles of Kar3Vik1 and Kar3Cik1, supporting the fact that these two motors have distinctive biological functions.

摘要

Kar3 是酿酒酵母微管负端定向的驱动蛋白 14,可与 Vik1 或 Cik1 二聚化。Vik1 的 C 端球状结构域表现出驱动蛋白结构域的结构,并独立于 Kar3 结合微管,但缺乏核苷酸结合位点。Kar3Vik1 的唯一已知功能是在有丝分裂期间在纺锤体两极交联平行微管。相比之下,Kar3Cik1 在交配过程中解聚微管,但在有丝分裂期间在纺锤体重叠区交联反平行微管。最近的一项研究表明,Kar3Vik1 跨相邻微管原丝结合,并使用负端定向动力冲程驱动 ATP 依赖性运动。这里提出的预稳态实验扩展了这项研究,并建立了动力冲程机制的 ATP 酶模型。模型中纳入的结果表明,Kar3Vik1 通过 Vik1 以 2.4 μm(-1) s(-1) 的速度与微管碰撞,促进 Kar3 与微管结合,然后以 14 s(-1) 的速度释放 ADP。Kar3 与微管的紧密结合使 Vik1 与微管的相互作用不稳定,使 Kar3Vik1 能够开始动力冲程。快速的 ATP 结合到 Kar3 与卷曲螺旋柄的旋转相关,并且在 26 s(-1) 时的后动力冲程 ATP 水解与 Vik1 无关,这进一步表明在动力冲程期间 Vik1 与卷曲螺旋一起旋转。Kar3Vik1 以 6 s(-1) 的速度从微管上脱离完成循环,并允许马达返回到其初始构象。结果还揭示了 Kar3Vik1 和 Kar3Cik1 的 ATP 酶循环的关键差异,支持这两个马达具有独特的生物学功能的事实。

相似文献

1
The ATPase pathway that drives the kinesin-14 Kar3Vik1 powerstroke.
J Biol Chem. 2012 Oct 26;287(44):36673-82. doi: 10.1074/jbc.M112.395590. Epub 2012 Sep 12.
2
Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern.
J Cell Biol. 2012 Jun 25;197(7):957-70. doi: 10.1083/jcb.201201132.
3
Common mechanistic themes for the powerstroke of kinesin-14 motors.
J Struct Biol. 2013 Nov;184(2):335-44. doi: 10.1016/j.jsb.2013.09.020. Epub 2013 Oct 4.
4
Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6359-64. doi: 10.1073/pnas.1505531112. Epub 2015 May 4.
5
Mechanistic analysis of the Saccharomyces cerevisiae kinesin Kar3.
J Biol Chem. 2004 Dec 3;279(49):51354-61. doi: 10.1074/jbc.M406268200. Epub 2004 Sep 21.
6
Neck rotation and neck mimic docking in the noncatalytic Kar3-associated protein Vik1.
J Biol Chem. 2012 Nov 23;287(48):40292-301. doi: 10.1074/jbc.M112.416529. Epub 2012 Oct 7.
7
Kar3Vik1 uses a minus-end directed powerstroke for movement along microtubules.
PLoS One. 2013;8(1):e53792. doi: 10.1371/journal.pone.0053792. Epub 2013 Jan 14.
8
Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the C terminus of the Vik1 subunit.
J Biol Chem. 2013 Dec 27;288(52):36957-70. doi: 10.1074/jbc.M113.492264. Epub 2013 Nov 16.
9
Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends.
Curr Biol. 2005 Aug 9;15(15):1420-7. doi: 10.1016/j.cub.2005.06.066.
10
Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site.
Cell. 2007 Mar 23;128(6):1161-72. doi: 10.1016/j.cell.2006.12.046.

引用本文的文献

3
Theory of Cytoskeletal Reorganization during Cross-Linker-Mediated Mitotic Spindle Assembly.
Biophys J. 2019 May 7;116(9):1719-1731. doi: 10.1016/j.bpj.2019.03.013. Epub 2019 Apr 13.
4
Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines.
Biophys Rev. 2015 Sep;7(3):269-299. doi: 10.1007/s12551-014-0150-6. Epub 2015 Feb 13.
5
Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast.
Sci Adv. 2017 Jan 20;3(1):e1601603. doi: 10.1126/sciadv.1601603. eCollection 2017 Jan.
6
Heterodimerization of Kinesin-2 KIF3AB Modulates Entry into the Processive Run.
J Biol Chem. 2016 Oct 28;291(44):23248-23256. doi: 10.1074/jbc.M116.752196. Epub 2016 Sep 16.
7
Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(6):060501. doi: 10.1103/PhysRevE.92.060501. Epub 2015 Dec 31.
9
Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6359-64. doi: 10.1073/pnas.1505531112. Epub 2015 May 4.

本文引用的文献

1
Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern.
J Cell Biol. 2012 Jun 25;197(7):957-70. doi: 10.1083/jcb.201201132.
2
Mitotic spindle form and function.
Genetics. 2012 Apr;190(4):1197-224. doi: 10.1534/genetics.111.128710.
3
Kinesin Kar3Cik1 ATPase pathway for microtubule cross-linking.
J Biol Chem. 2011 Aug 19;286(33):29261-29272. doi: 10.1074/jbc.M111.255554. Epub 2011 Jun 16.
4
Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14.
J Cell Biol. 2010 May 3;189(3):465-80. doi: 10.1083/jcb.200910125.
5
Cryo-electron tomography of microtubule-kinesin motor complexes.
J Struct Biol. 2010 May;170(2):257-65. doi: 10.1016/j.jsb.2009.12.004. Epub 2009 Dec 16.
6
The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding.
Nat Cell Biol. 2009 Jun;11(6):717-23. doi: 10.1038/ncb1877. Epub 2009 May 10.
7
The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism.
Nat Cell Biol. 2009 Jun;11(6):724-30. doi: 10.1038/ncb1878. Epub 2009 May 10.
8
Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules.
Mol Biol Cell. 2009 Mar;20(5):1348-59. doi: 10.1091/mbc.e08-09-0971. Epub 2008 Dec 30.
9
The microtubule-based motor Kar3 and plus end-binding protein Bim1 provide structural support for the anaphase spindle.
J Cell Biol. 2008 Jan 14;180(1):91-100. doi: 10.1083/jcb.200710164. Epub 2008 Jan 7.
10
Microtubule motor Ncd induces sliding of microtubules in vivo.
Mol Biol Cell. 2007 Sep;18(9):3601-6. doi: 10.1091/mbc.e06-12-1085. Epub 2007 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验