Department of Biology and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
J Biol Chem. 2012 Oct 26;287(44):36673-82. doi: 10.1074/jbc.M112.395590. Epub 2012 Sep 12.
Kar3, a Saccharomyces cerevisiae microtubule minus-end-directed kinesin-14, dimerizes with either Vik1 or Cik1. The C-terminal globular domain of Vik1 exhibits the structure of a kinesin motor domain and binds microtubules independently of Kar3 but lacks a nucleotide binding site. The only known function of Kar3Vik1 is to cross-link parallel microtubules at the spindle poles during mitosis. In contrast, Kar3Cik1 depolymerizes microtubules during mating but cross-links antiparallel microtubules in the spindle overlap zone during mitosis. A recent study showed that Kar3Vik1 binds across adjacent microtubule protofilaments and uses a minus-end-directed powerstroke to drive ATP-dependent motility. The presteady-state experiments presented here extend this study and establish an ATPase model for the powerstroke mechanism. The results incorporated into the model indicate that Kar3Vik1 collides with the microtubule at 2.4 μm(-1) s(-1) through Vik1, promoting microtubule binding by Kar3 followed by ADP release at 14 s(-1). The tight binding of Kar3 to the microtubule destabilizes the Vik1 interaction with the microtubule, positioning Kar3Vik1 for the start of the powerstroke. Rapid ATP binding to Kar3 is associated with rotation of the coiled-coil stalk, and the postpowerstroke ATP hydrolysis at 26 s(-1) is independent of Vik1, providing further evidence that Vik1 rotates with the coiled coil during the powerstroke. Detachment of Kar3Vik1 from the microtubule at 6 s(-1) completes the cycle and allows the motor to return to its initial conformation. The results also reveal key differences in the ATPase cycles of Kar3Vik1 and Kar3Cik1, supporting the fact that these two motors have distinctive biological functions.
Kar3 是酿酒酵母微管负端定向的驱动蛋白 14,可与 Vik1 或 Cik1 二聚化。Vik1 的 C 端球状结构域表现出驱动蛋白结构域的结构,并独立于 Kar3 结合微管,但缺乏核苷酸结合位点。Kar3Vik1 的唯一已知功能是在有丝分裂期间在纺锤体两极交联平行微管。相比之下,Kar3Cik1 在交配过程中解聚微管,但在有丝分裂期间在纺锤体重叠区交联反平行微管。最近的一项研究表明,Kar3Vik1 跨相邻微管原丝结合,并使用负端定向动力冲程驱动 ATP 依赖性运动。这里提出的预稳态实验扩展了这项研究,并建立了动力冲程机制的 ATP 酶模型。模型中纳入的结果表明,Kar3Vik1 通过 Vik1 以 2.4 μm(-1) s(-1) 的速度与微管碰撞,促进 Kar3 与微管结合,然后以 14 s(-1) 的速度释放 ADP。Kar3 与微管的紧密结合使 Vik1 与微管的相互作用不稳定,使 Kar3Vik1 能够开始动力冲程。快速的 ATP 结合到 Kar3 与卷曲螺旋柄的旋转相关,并且在 26 s(-1) 时的后动力冲程 ATP 水解与 Vik1 无关,这进一步表明在动力冲程期间 Vik1 与卷曲螺旋一起旋转。Kar3Vik1 以 6 s(-1) 的速度从微管上脱离完成循环,并允许马达返回到其初始构象。结果还揭示了 Kar3Vik1 和 Kar3Cik1 的 ATP 酶循环的关键差异,支持这两个马达具有独特的生物学功能的事实。