Suppr超能文献

In vitro analysis of anionic collagen scaffolds for bone repair.

作者信息

Moreira Patricia L, An Yuehuei H, Santos Arnaldo Rodrigues, Genari Selma Candelária

机构信息

Department of Cellular Biology, State University of Campinas, PO Box 6109, São Paulo 13084-971, Brazil.

出版信息

J Biomed Mater Res B Appl Biomater. 2004 Nov 15;71(2):229-37. doi: 10.1002/jbm.b.30026.

Abstract

Collagen has been extensively described as a beneficial material in bone tissue engineering due to its biocompatibility, biodegradability, low antigenicity, and high tensile strength. However, collagen scaffolds in their pure form have some drawbacks and improvements in the physical, chemical, and biologic properties of collagen are necessary to overcome those inadequacies. Recently, the selective hydrolysis of carboxyamides of asparagine and glutamine residues of collagen has been employed to increase the number of negative sites and enhance the piezoelectric properties of collagen. Anionic collagen scaffolds were prepared by use of a hydrolysis treatment for either 24 h [bovine pericardium (BP 24)] or 48 h (BP 48). Bovine osteoblasts were cultured on them and on native matrices to understand the cellular interactions responsible for the good osteoconductivity and biocompatibility reported with in vivo tests. Based on the data obtained on cell adhesion, alkaline phosphatase (ALP) and extracellular matrix macromolecule production, and cellular proliferation through histological analysis, we may conclude that the materials tested reveal sufficient biocompatibility level for bone repair. Further, the evidence of some connection between ALP activity and the mineralization process should be emphasized. BP 48 presented the most promising results stimulating in vitro mineralization, ALP production, and possible osteoblast differentiation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验