Suppr超能文献

GLAD:一个用于开发和部署大规模生物信息学网格的系统。

GLAD: a system for developing and deploying large-scale bioinformatics grid.

作者信息

Teo Yong-Meng, Wang Xianbing, Ng Yew-Kwong

机构信息

Department of Computer Science, National University of Singapore, Singapore 117543.

出版信息

Bioinformatics. 2005 Mar;21(6):794-802. doi: 10.1093/bioinformatics/bti034. Epub 2004 Sep 23.

Abstract

MOTIVATION

Grid computing is used to solve large-scale bioinformatics problems with gigabytes database by distributing the computation across multiple platforms. Until now in developing bioinformatics grid applications, it is extremely tedious to design and implement the component algorithms and parallelization techniques for different classes of problems, and to access remotely located sequence database files of varying formats across the grid. In this study, we propose a grid programming toolkit, GLAD (Grid Life sciences Applications Developer), which facilitates the development and deployment of bioinformatics applications on a grid.

RESULTS

GLAD has been developed using ALiCE (Adaptive scaLable Internet-based Computing Engine), a Java-based grid middleware, which exploits the task-based parallelism. Two bioinformatics benchmark applications, such as distributed sequence comparison and distributed progressive multiple sequence alignment, have been developed using GLAD.

摘要

动机

网格计算通过在多个平台上分布计算来解决具有千兆字节数据库的大规模生物信息学问题。到目前为止,在开发生物信息学网格应用程序时,针对不同类型的问题设计和实现组件算法及并行化技术,以及跨网格远程访问不同格式的位于远程的序列数据库文件,都极其繁琐。在本研究中,我们提出了一个网格编程工具包GLAD(网格生命科学应用程序开发者工具包),它有助于在网格上开发和部署生物信息学应用程序。

结果

GLAD是使用ALiCE(基于自适应可扩展互联网的计算引擎)开发的,ALiCE是一个基于Java的网格中间件,它利用基于任务的并行性。使用GLAD开发了两个生物信息学基准应用程序,如分布式序列比较和分布式渐进多序列比对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验