钠通道在实验性自身免疫性脑脊髓炎和多发性硬化症中促成小胶质细胞/巨噬细胞的激活及功能。
Sodium channels contribute to microglia/macrophage activation and function in EAE and MS.
作者信息
Craner Matthew J, Damarjian Tina G, Liu Shujun, Hains Bryan C, Lo Albert C, Black Joel A, Newcombe Jia, Cuzner M Louise, Waxman Stephen G
机构信息
Department of Neurology and Center for Neuroscience and Regeneration Research, Yale School of Medicine, New Haven, Connecticut 06520-8018, USA.
出版信息
Glia. 2005 Jan 15;49(2):220-9. doi: 10.1002/glia.20112.
Loss of axons is a major contributor to nonremitting deficits in the inflammatory demyelinating disease multiple sclerosis (MS). Based on biophysical studies showing that activity of axonal sodium channels can trigger axonal degeneration, recent studies have tested sodium channel-blocking drugs in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and have demonstrated a protective effect on axons. However, it is possible that, in addition to a direct effect on axons, sodium channel blockers may also interfere with inflammatory mechanisms. We therefore examined the novel hypothesis that sodium channels contribute to activation of microglia and macrophages in EAE and acute MS lesions. In this study, we demonstrate a robust increase of sodium channel Nav1.6 expression in activated microglia and macrophages in EAE and MS. We further demonstrate that treatment with the sodium channel blocker phenytoin ameliorates the inflammatory cell infiltrate in EAE by 75%. Supporting a role for sodium channels in microglial activation, we show that tetrodotoxin, a specific sodium channel blocker, reduces the phagocytic function of activated rat microglia by 40%. To further confirm a role of Nav1.6 in microglial activation, we examined the phagocytic capacity of microglia from med mice, which lack Nav1.6 channels, and show a 65% reduction in phagocytic capacity compared with microglia from wildtype mice. Our findings indicate that sodium channels are important for activation and phagocytosis of microglia and macrophages in EAE and MS and suggest that, in addition to a direct neuroprotective effect on axons, sodium channel blockade may ameliorate neuroinflammatory disorders via anti-inflammatory mechanisms.
轴突丧失是炎症性脱髓鞘疾病多发性硬化症(MS)中导致持续性神经功能缺损的主要因素。基于生物物理学研究表明轴突钠通道的活性可触发轴突变性,最近的研究在实验性自身免疫性脑脊髓炎(EAE,一种MS的动物模型)中测试了钠通道阻滞剂药物,并证明其对轴突具有保护作用。然而,除了对轴突的直接作用外,钠通道阻滞剂还可能干扰炎症机制。因此,我们检验了一个新的假说,即钠通道在EAE和急性MS病变中促进小胶质细胞和巨噬细胞的激活。在本研究中,我们证明在EAE和MS中,活化的小胶质细胞和巨噬细胞中钠通道Nav1.6的表达显著增加。我们进一步证明,用钠通道阻滞剂苯妥英治疗可使EAE中的炎症细胞浸润减少75%。支持钠通道在小胶质细胞激活中的作用,我们表明,特异性钠通道阻滞剂河豚毒素可使活化的大鼠小胶质细胞的吞噬功能降低40%。为了进一步证实Nav1.6在小胶质细胞激活中的作用,我们检测了缺乏Nav1.6通道的med小鼠的小胶质细胞的吞噬能力,结果显示与野生型小鼠的小胶质细胞相比,其吞噬能力降低了65%。我们的研究结果表明,钠通道对于EAE和MS中小胶质细胞和巨噬细胞的激活及吞噬作用很重要,并提示除了对轴突有直接的神经保护作用外,钠通道阻滞剂可能通过抗炎机制改善神经炎症性疾病。