Suppr超能文献

Competitive inhibition of lipolytic enzymes. VI. Inhibition of two human phospholipases A2 by acylamino phospholipid analogues.

作者信息

van den Berg L, Franken P A, Verheij H M, Dijkman R, de Haas G H

机构信息

Department of Enzymology and Protein Engineering, CBLE, State University of Utrecht, Netherlands.

出版信息

Biochim Biophys Acta. 1992 Feb 20;1124(1):66-70. doi: 10.1016/0005-2760(92)90127-h.

Abstract

The competitive inhibition of human pancreatic and a mutant human platelet phospholipase A2 (PLA2) was investigated using acylamino phospholipid analogues, which are potent competitive inhibitors of porcine pancreatic PLA2 [De Haas et al. (1990) Biochim. Biophys. Acta 1046, 249-257]. Both the mutant platelet PLA2 and the human pancreatic PLA2 are effectively inhibited by these compounds. The enzyme from platelets is most strongly inhibited by compounds with a negatively charged phosphoglycol headgroup. Compounds with a neutral phosphocholine headgroup are only weak inhibitors, whereas an inhibitor with a phosphoethanolamine headgroup shows an intermediate inhibitory capacity. The platelet PLA2 is most effectively inhibited by negatively charged inhibitors having a relatively short (four or more carbon atoms) alkylchain on position one and a acylamino chain of 14 carbon atoms on position two. For the pancreatic enzyme an inhibitor with a phosphoethanolamine headgroup was more effective than inhibitors with either a phosphocholine or a phosphoglycol headgroup. The chainlength preference of the pancreatic enzyme resembles that of the platelet PLA2. The largest discrimination in inhibition between the human platelet and the human pancreatic PLA2 is obtained with inhibitors with a negatively charged phosphoglycol headgroup, an alkyl chain of four carbon atoms on position one and a long acylamino chain of 14-16 carbon atoms on position two. Because the platelet PLA2 is thought to have several biological functions, specific inhibitors of this enzyme could have important implications in the design of pharmaceutically interesting compounds.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验