Walter Th, Pesch W, Bodenschatz E
Physikalisches Institut der Universität Bayreuth, D-95440 Bayreuth, Germany.
Chaos. 2004 Sep;14(3):933-9. doi: 10.1063/1.1772231.
Theoretical results on the dynamics of dislocations in Rayleigh-Bénard convection are reported both for a Swift-Hohenberg model and the Oberbeck-Boussinesq equations. For intermediate Prandtl numbers the motion of dislocations is found to be driven by the superposition of two independent contributions: (i) the Peach-Koehler force and (ii) an advection force on the dislocation core by its self-generated mean flow. Their competition allows to explain the experimentally observed bound dislocation pairs.
本文报道了瑞利-贝纳德对流中,针对斯威夫特-霍恩伯格模型和奥伯贝克-布西涅斯克方程的位错动力学理论结果。对于中等普朗特数,发现位错运动由两个独立因素叠加驱动:(i)皮奇-科勒力,以及(ii)位错核心因其自身产生的平均流所受到的平流力。它们之间的竞争能够解释实验中观察到的束缚位错对。