Suppr超能文献

通过瑞利-贝纳德对流应用说明的时空混沌系统的状态和参数估计。

State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection.

作者信息

Cornick Matthew, Hunt Brian, Ott Edward, Kurtuldu Huseyin, Schatz Michael F

机构信息

University of Maryland, College Park, Maryland 20742, USA.

出版信息

Chaos. 2009 Mar;19(1):013108. doi: 10.1063/1.3072780.

Abstract

Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.

摘要

数据同化是指结合系统时间演化模型,从一系列测量值(可能存在噪声或不完整)的时间序列中估计系统状态的过程。在此,我们展示了一种最近开发的数据同化方法——局部集合变换卡尔曼滤波器,在瑞利 - 贝纳德对流实验中对非线性、高维、时空混沌流的适用性。使用该技术,我们能够从一系列阴影图测量值的时间序列中提取完整的温度和速度场。此外,我们描述了用于估计模型参数的算法扩展。我们的结果表明,我们的数据同化技术对于广泛的呈现时空混沌的实验情况具有潜在的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验