Wei J J, Velarde M G
Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, n. 1, 28040 Madrid, Spain.
Chaos. 2004 Sep;14(3):940-53. doi: 10.1063/1.1768111.
Results are provided here about the stability and bifurcation of periodic solutions for a (neural) network with n elements where delays between adjacent units and external inputs are included. The particular cases n = 2 and n = 3 are discussed in details, to explicitly illustrate the role of the delays in the corresponding bifurcation sets and the stability properties, like a Hopf bifurcation, a pitchfork bifurcation, and a Bogdanov-Takens bifurcation.
这里给出了关于一个具有n个元素的(神经)网络周期解的稳定性和分岔的结果,该网络包含相邻单元之间的延迟和外部输入。详细讨论了n = 2和n = 3的特殊情况,以明确说明延迟在相应分岔集和稳定性特性(如霍普夫分岔、叉形分岔和博格达诺夫 - 塔克恩斯分岔)中的作用。