Department of Mathematics, Central South University, Changsha, Hunan, 410083, PR China.
Neural Netw. 2010 Sep;23(7):872-80. doi: 10.1016/j.neunet.2010.03.004. Epub 2010 Apr 7.
In this paper, a class of simplified tri-neuron BAM network model with two delays is considered. By applying the frequency domain approach and analyzing the associated characteristic equation, the existence of bifurcation parameter point is determined. If the sum tau of delays tau(1) and tau(2) is chosen as a bifurcation parameter, it is found that Hopf bifurcation occurs when the sum tau passes through a series of critical values. The direction and the stability of Hopf bifurcation periodic solutions are determined by the Nyquist criterion and the graphical Hopf bifurcation theorem. Some numerical simulations for justifying the theoretical analysis are also provided. Finally, main conclusions are given.
本文研究了一类具有两个时滞的简化三神经元 BAM 网络模型。通过应用频域方法和分析相关特征方程,确定了分岔参数点的存在。如果选择时滞 τ(1)和 τ(2)的和 τ 作为分岔参数,则当 τ 经过一系列临界值时,会发现发生 Hopf 分岔。Hopf 分岔周期解的方向和稳定性由奈奎斯特准则和图形 Hopf 分岔定理确定。还提供了一些数值模拟来验证理论分析。最后给出了主要结论。