dos Reis Mario, Savva Renos, Wernisch Lorenz
School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK.
Nucleic Acids Res. 2004 Sep 24;32(17):5036-44. doi: 10.1093/nar/gkh834. Print 2004.
Translational selection is responsible for the unequal usage of synonymous codons in protein coding genes in a wide variety of organisms. It is one of the most subtle and pervasive forces of molecular evolution, yet, establishing the underlying causes for its idiosyncratic behaviour across living kingdoms has proven elusive to researchers over the past 20 years. In this study, a statistical model for measuring translational selection in any given genome is developed, and the test is applied to 126 fully sequenced genomes, ranging from archaea to eukaryotes. It is shown that tRNA gene redundancy and genome size are interacting forces that ultimately determine the action of translational selection, and that an optimal genome size exists for which this kind of selection is maximal. Accordingly, genome size also presents upper and lower boundaries beyond which selection on codon usage is not possible. We propose a model where the coevolution of genome size and tRNA genes explains the observed patterns in translational selection in all living organisms. This model finally unifies our understanding of codon usage across prokaryotes and eukaryotes. Helicobacter pylori, Saccharomyces cerevisiae and Homo sapiens are codon usage paradigms that can be better understood under the proposed model.
在各种各样的生物体中,翻译选择导致了蛋白质编码基因中同义密码子的不均衡使用。它是分子进化中最微妙且普遍存在的力量之一,然而,在过去20年里,研究人员一直难以确定其在不同生物界中独特行为的根本原因。在这项研究中,开发了一种用于测量任何给定基因组中翻译选择的统计模型,并将该测试应用于126个全测序基因组,范围从古细菌到真核生物。结果表明,tRNA基因冗余和基因组大小是相互作用的力量,最终决定了翻译选择的作用,并且存在一个最佳基因组大小,在这个大小下这种选择是最大的。因此,基因组大小也呈现出上限和下限,超过这个范围就不可能对密码子使用进行选择。我们提出了一个模型,其中基因组大小和tRNA基因的共同进化解释了在所有生物体中观察到的翻译选择模式。这个模型最终统一了我们对原核生物和真核生物密码子使用的理解。幽门螺杆菌、酿酒酵母和智人是密码子使用范例,在提出的模型下可以得到更好的理解。