Suppr超能文献

Macroscopic folding and replication of the homogeneously staining region in late S phase leads to the appearance of replication bands in mitotic chromosomes.

作者信息

Shimizu Noriaki, Shingaki Kenta

机构信息

Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521, Japan.

出版信息

J Cell Sci. 2004 Oct 15;117(Pt 22):5303-12. doi: 10.1242/jcs.01414. Epub 2004 Sep 28.

Abstract

The chromosomal G/R bands are alternating domains differing in their nucleotide sequence biases. The bands are also related to the time of replication: pulse-labeling during S phase makes the replication sites as visible as replication bands that are close to the G/R bands in mitotic chromosomes. We previously showed that a plasmid bearing a mammalian replication origin efficiently generated a chromosomal homogeneously staining region (HSR). Here, we analyze the replication of this artificial HSR and show that it was replicated at the last stage of S phase. The HSR was composed of plasmid repeats only; nonetheless, we found that replication sites pulse-labeled during late S phase appeared as bands in the mitotic HSR and their number was dependent on the length of the HSR. Therefore, replication bands might not arise from sequence information per se. To understand the chronological order of appearance of replication sites, we performed a double pulse-chase experiment using IdU and CldU. Replication of the entire HSR required 100-120 minutes. During this period, the replicated sites appeared as bands at the first and last stages, but in between were apparently scattered along the entire HSR. An analysis of S-phase nuclei revealed that the replication started at the periphery of the globular HSR domain, followed by initiation in the internal domain. The replicated HSR appeared as a ring or a pair of extended spirals in late G2-phase nuclei. To account for these findings, we present a model in which the HSR is folded as a coiled-coil structure that is replicated from the outside to the inside in S phase nuclei.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验