Suppr超能文献

来自强激光与等离子体相互作用产生的相对论电子单能束。

Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.

作者信息

Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K

机构信息

The Blackett Laboratory, Imperial College London, London SW7 2AZ, UK.

出版信息

Nature. 2004 Sep 30;431(7008):535-8. doi: 10.1038/nature02939.

Abstract

High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

摘要

能够放入大学规模实验室的高功率激光器,现在可以在高重复频率下达到超过10¹⁹W/cm²的聚焦强度。这类激光器能够产生高能电子、质子和伽马射线束。相对论性电子是通过激光脉冲在等离子体中传播时在其后产生的大振幅相对论性等离子体波的破裂产生的,或者是通过激光场与等离子体中的电子直接相互作用产生的。然而,以往激光-等离子体实验产生的电子束能量分散很大,限制了它们在潜在应用中的使用。在这里,我们报告了对强激光-等离子体相互作用产生的电子束的高分辨率能量测量结果,表明在特定的等离子体条件下,可以产生发散度低且能量分散小(小于3%)的相对论性电子束。在等离子体密度略高于等离子体波破裂所需阈值时,在电子能谱中观察到了单能特征。尽管观察到每次发射的电子束能量有所不同,但在电子能谱中始终观察到这些特征。如果能够解决能量可重复性问题,就应该能够产生可调谐能量的超短单能电子束,这对“桌面型”粒子加速器的未来发展具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验