Tu Yu-Kang, Clerehugh Valerie, Gilthorpe Mark S
Department of Periodontology, Leeds Dental Institute, University of Leeds, Leeds, UK.
Eur J Oral Sci. 2004 Oct;112(5):389-97. doi: 10.1111/j.1600-0722.2004.00160.x.
The aim of this article is to encourage good practice in the statistical analysis of dental research data. Our objective is to highlight the statistical problems of collinearity and multicollinearity. These are among the most common statistical pitfalls in oral health research when exploring the relationship between clinical variables using multiple regression analysis. We hope that this article will show why these problems arise and how they can be avoided and overcome. Examples from the periodontal literature will be used to illustrate how collinearity and multicollinearity can seriously distort the model development process as a result of the phenomenon of mathematical coupling. Knowledge of these problems can help to eliminate misleading results and improve any subsequent interpretations. Regression analyses are useful tools in oral health research when their limitations are recognized. However, care is required in planning and it is worthwhile seeking statistical advice when formulating the study's research questions.
本文旨在鼓励在牙科研究数据的统计分析中采用良好的做法。我们的目标是突出共线性和多重共线性的统计问题。在使用多元回归分析探索临床变量之间的关系时,这些是口腔健康研究中最常见的统计陷阱。我们希望本文将说明这些问题为何会出现以及如何避免和克服它们。牙周病学文献中的例子将用于说明共线性和多重共线性如何由于数学耦合现象而严重扭曲模型开发过程。了解这些问题有助于消除误导性结果并改进后续的任何解释。当认识到回归分析的局限性时,它是口腔健康研究中的有用工具。然而,规划时需要谨慎,在制定研究的研究问题时寻求统计建议是值得的。