Suppr超能文献

高度相关预测因子的回归:变量剔除并非解决之道。

Regression with Highly Correlated Predictors: Variable Omission Is Not the Solution.

机构信息

Section for Clinical Biometrics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria.

Center for Public Health, Department of Epidemiology, Medical University of Vienna, 1090 Vienna, Austria.

出版信息

Int J Environ Res Public Health. 2021 Apr 17;18(8):4259. doi: 10.3390/ijerph18084259.

Abstract

Regression models have been in use for decades to explore and quantify the association between a dependent response and several independent variables in environmental sciences, epidemiology and public health. However, researchers often encounter situations in which some independent variables exhibit high bivariate correlation, or may even be collinear. Improper statistical handling of this situation will most certainly generate models of little or no practical use and misleading interpretations. By means of two example studies, we demonstrate how diagnostic tools for collinearity or near-collinearity may fail in guiding the analyst. Instead, the most appropriate way of handling collinearity should be driven by the research question at hand and, in particular, by the distinction between predictive or explanatory aims.

摘要

回归模型在环境科学、流行病学和公共卫生领域已经使用了几十年,用于探索和量化因变量与多个自变量之间的关系。然而,研究人员经常遇到一些自变量之间存在高度的双变量相关性,甚至可能是共线性的情况。如果对这种情况进行不当的统计处理,很可能会生成实用性或解释性都很小的模型。通过两个示例研究,我们展示了共线性或近似共线性的诊断工具如何可能无法指导分析人员。相反,处理共线性的最合适方法应该取决于手头的研究问题,特别是要区分预测性或解释性目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccb9/8073086/c5bbd79e7355/ijerph-18-04259-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验