Suppr超能文献

用于基因表达分析的基于垂直样本的综合KNN/LSVM分类

Comprehensive vertical sample-based KNN/LSVM classification for gene expression analysis.

作者信息

Pan Fei, Wang Baoying, Hu Xin, Perrizo William

机构信息

Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA.

出版信息

J Biomed Inform. 2004 Aug;37(4):240-8. doi: 10.1016/j.jbi.2004.07.003.

Abstract

Classification analysis of microarray gene expression data has been widely used to uncover biological features and to distinguish closely related cell types that often appear in the diagnosis of cancer. However, the number of dimensions of gene expression data is often very high, e.g., in the hundreds or thousands. Accurate and efficient classification of such high-dimensional data remains a contemporary challenge. In this paper, we propose a comprehensive vertical sample-based KNN/LSVM classification approach with weights optimized by genetic algorithms for high-dimensional data. Experiments on common gene expression datasets demonstrated that our approach can achieve high accuracy and efficiency at the same time. The improvement of speed is mainly related to the vertical data representation, P-tree,Patents are pending on the P-tree technology. This work is partially supported by GSA Grant ACT#:K96130308. and its optimized logical algebra. The high accuracy is due to the combination of a KNN majority voting approach and a local support vector machine approach that makes optimal decisions at the local level. As a result, our approach could be a powerful tool for high-dimensional gene expression data analysis.

摘要

微阵列基因表达数据的分类分析已被广泛用于揭示生物学特征,并区分在癌症诊断中经常出现的密切相关的细胞类型。然而,基因表达数据的维度数量通常非常高,例如,达到数百或数千。对这种高维数据进行准确而高效的分类仍然是一个当代挑战。在本文中,我们针对高维数据提出了一种基于垂直样本的综合KNN/LSVM分类方法,其权重通过遗传算法进行优化。在常见基因表达数据集上的实验表明,我们的方法能够同时实现高精度和高效率。速度的提升主要与垂直数据表示、P树有关,P树技术的专利正在申请中。这项工作部分得到了美国地质调查局资助项目ACT#:K96130308的支持,以及其优化的逻辑代数。高精度归因于KNN多数投票方法和局部支持向量机方法的结合,后者在局部层面做出最优决策。因此,我们的方法可能成为高维基因表达数据分析的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验