López de Haro M, Tejero C F
Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
J Chem Phys. 2004 Oct 8;121(14):6918-21. doi: 10.1063/1.1791611.
The demixing transition of a binary fluid mixture of additive hard spheres is analyzed for different size asymmetries by starting from the exact low-density expansion of the pressure. Already within the second virial approximation the fluid separates into two phases of different composition with a lower consolute critical point. By successively incorporating the third, fourth, and fifth virial coefficients, the critical consolute point moves to higher values of the pressure and to lower values of the partial number fraction of the large spheres. When the exact low-density expansion of the pressure is rescaled to higher densities as in the Percus-Yevick theory, by adding more exact virial coefficients a different qualitative movement of the critical consolute point in the phase diagram is found. It is argued that the Percus-Yevick factor appearing in many empirical equations of state for the mixture has a deep influence on the location of the critical consolute point, so that the resulting phase diagram for a prescribed equation has to be taken with caution.
从压力的精确低密度展开式出发,分析了添加剂硬球二元流体混合物在不同尺寸不对称情况下的混合转变。即使在第二维里近似下,流体也会分离成具有较低会溶临界点的不同组成的两相。通过依次纳入第三、第四和第五维里系数,会溶临界点向更高的压力值和更低的大球体部分数分数值移动。当压力的精确低密度展开式如珀库斯 - 耶维克理论那样重新标度到更高密度时,通过添加更多精确的维里系数,在相图中会发现会溶临界点有不同的定性移动。有人认为,出现在该混合物许多经验状态方程中的珀库斯 - 耶维克因子对会溶临界点的位置有深远影响,因此对于给定方程得到的相图必须谨慎对待。