Santos A, López de Haro M
Departamento de Física, Universidad de Extremadura, Badajoz, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):010501. doi: 10.1103/PhysRevE.72.010501. Epub 2005 Jul 29.
A binary fluid mixture of nonadditive hard spheres characterized by a size ratio gamma = sigma(2)/sigma(1) < 1 and a nonadditivity parameter Delta = 2 sigma(12)/(sigma(1) + sigma(2)) - 1 is considered in infinitely many dimensions. From the equation of state in the second virial approximation (which is exact in the limit d--> infinity) a demixing transition with a critical consolute point at a packing fraction scaling as eta approximately d2(-d) is found, even for slightly negative nonadditivity, if Delta >-1/8 (ln gamma)(2). Arguments concerning the stability of the demixing with respect to freezing are provided.
考虑一种由非加和硬球组成的二元流体混合物,其特征为尺寸比γ = σ₂/σ₁ < 1和非加和参数Δ = 2σ₁₂/(σ₁ + σ₂) - 1,处于无限维空间。从第二维里近似下的状态方程(在d→∞的极限情况下是精确的)发现,即使对于轻微负的非加和性,只要Δ > -1/8(lnγ)²,就会出现具有临界共溶点的相分离转变,其临界体积分数标度为η ≈ d²⁻ᵈ。还给出了关于相分离相对于冻结稳定性的讨论。