Buswell Marina, Fleming Ian, Ghosh Usha, Mack Stephen, Russell Matthew, Clark Barry P
Department of Chemistry, Lensfield Road, Cambridge, UK.
Org Biomol Chem. 2004 Oct 21;2(20):3006-17. doi: 10.1039/B412768D. Epub 2004 Sep 27.
Phenyldimethylsilyllithium reacts with N,N-dimethylamides in a variety of ways, depending upon the stoichiometry, the temperature and, most subtly, on the structure of the amide, with quite small-seeming changes in structure leading to profound changes in the nature of the products. When equimolar amounts of the silyllithium reagent and N,N-dimethylamides 6 are combined in THF at -78 degrees C, and the mixture quenched at -78 degrees C, the product is the corresponding acylsilane . If the same mixture is warmed to -20 degrees C before quenching, the product is a cis enediamine 11. The enediamines are easily isomerised from cis to trans, easily oxidised to dienediamines , and, with more difficulty, hydrolysed to alpha-aminoketones 13. If two equivalents of the silyllithium reagent are used, the product is an alpha-silylamine 20. The mechanism of formation of the enediamines appears to be by way of a Brook rearrangement of the tetrahedral intermediate 17 followed by loss of a silanoxide ion to give a carbene or carbene-like species. The 'carbene' combines with the Brook-rearranging nucleophile to give an intermediate 28, which loses another silanoxide ion to give the enediamine. The same carbene can be attacked by a second equivalent of the silyllithium reagent to give the alpha-silylamine 20. Other nucleophiles, like alkyllithiums, phenyllithium, and tributylstannyllithium also trap the carbene to give products 48-52. The intermediate anions in these reactions, when benzylic, can be further trapped with alkylating agents to give the products 33, 34 and 53-55. In special cases, the anion formed by attack on the carbene can be trapped by intramolecular reactions displacing internal leaving groups, as in the formation of the enamine 37 and the cyclopentane 41, or attacking a carbonyl group, as in the formation of the indanone 61, or attacking a double or triple bond, as in the formation of the cyclopentanes 71 and 75. In another special case, the carbene reacts with vinyllithium to give an allyllithium intermediate 56, which selectively attacks another molecule of carbene to give eventually the gamma-aminoketone 58. Small changes in the structure of the amide lead to a variety of other pathways each of which is discussed in the text. Notably, each member of the homologous series of amides Ph(CH2)nCONMe2 gives rise to a substantially different product: when n= 0, the reaction is normal, and the yield of the alph]-silylamine 20e is high; when n=1, proton transfer in the intermediate anion 64 and displacement of the phenyl group leads to the silaindane 66; when n=2, fragmentation of the intermediate anion 80, and capture of the carbene by benzyllithium leads to the 1,4-diphenylbut-2-ylamine 83; and when n=3, proton transfer in the intermediate anion 67 and displacement of the phenyl group leads to the silacyclopentane 69.
苯基二甲基硅基锂与N,N - 二甲基酰胺以多种方式反应,这取决于化学计量比、温度,最微妙的是取决于酰胺的结构,结构上看似很小的变化会导致产物性质发生深刻变化。当等摩尔量的硅基锂试剂和N,N - 二甲基酰胺6在四氢呋喃中于 - 78℃混合,然后在 - 78℃淬灭混合物时,产物是相应的酰基硅烷。如果在淬灭前将相同的混合物升温至 - 20℃,产物是顺式烯二胺11。烯二胺很容易从顺式异构化为反式,很容易氧化为二烯二胺,并且较难水解为α - 氨基酮13。如果使用两当量的硅基锂试剂,产物是α - 硅基胺20。烯二胺的形成机制似乎是通过四面体中间体17的布鲁克重排,然后失去一个硅醇盐离子以产生卡宾或类卡宾物种。“卡宾”与进行布鲁克重排的亲核试剂结合生成中间体28,中间体28再失去另一个硅醇盐离子生成烯二胺。同一卡宾可以被第二当量的硅基锂试剂进攻生成α - 硅基胺20。其他亲核试剂,如烷基锂、苯基锂和三丁基锡基锂,也会捕获卡宾生成产物48 - 52。这些反应中的中间体阴离子,当为苄基型时,可以进一步被烷基化试剂捕获生成产物33、34和53 - 55。在特殊情况下,进攻卡宾形成的阴离子可以通过分子内反应捕获,取代内部离去基团,如在烯胺37和环戊烷41的形成中,或进攻羰基,如在茚满酮61的形成中,或进攻双键或三键,如在环戊烷71和75的形成中。在另一个特殊情况中,卡宾与乙烯基锂反应生成烯丙基锂中间体56,烯丙基锂中间体56选择性地进攻另一个卡宾分子最终生成γ - 氨基酮58。酰胺结构的微小变化会导致各种其他反应途径,每种途径在文中都有讨论。值得注意的是,酰胺同系物Ph(CH₂)ₙCONMe₂的每个成员都会产生截然不同的产物:当n = 0时,反应正常,α - 硅基胺20e的产率很高;当n = 1时,中间体阴离子64中的质子转移和苯基的取代导致硅茚满66的生成;当n = 2时,中间体阴离子80的碎片化以及苄基锂对卡宾的捕获导致1,4 - 二苯基丁 - 2 - 胺83的生成;当n = 3时,中间体阴离子67中的质子转移和苯基的取代导致硅环戊烷69的生成。