Patel Leena S, Wenzel H Jürgen, Schwartzkroin Philip A
Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.
J Neurosci. 2004 Oct 13;24(41):9005-14. doi: 10.1523/JNEUROSCI.2943-04.2004.
There is a high correlation between pediatric epilepsies and neuronal migration disorders. What remains unclear is whether there are intrinsic features of the individual dysplastic cells that give rise to heightened seizure susceptibility, or whether these dysplastic cells contribute to seizure activity by establishing abnormal circuits that alter the balance of inhibition and excitation. Mice lacking a functional p35 gene provide an ideal model in which to address these questions, because these knock-out animals not only exhibit aberrant neuronal migration but also demonstrate spontaneous seizures. Extracellular field recordings from hippocampal slices, characterizing the input-output relationship in the dentate, revealed little difference between wild-type and knock-out mice under both normal and elevated extracellular potassium conditions. However, in the presence of the GABA(A) antagonist bicuculline, p35 knock-out slices, but not wild-type slices, exhibited prolonged depolarizations in response to stimulation of the perforant path. There were no significant differences in the intrinsic properties of dentate granule cells (i.e., input resistance, time constant, action potential generation) from wild-type versus knock-out mice. However, antidromic activation (mossy fiber stimulation) evoked an excitatory synaptic response in over 65% of granule cells from p35 knock-out slices that was never observed in wild-type slices. Ultrastructural analyses identified morphological substrates for this aberrant excitation: recurrent axon collaterals, abnormal basal dendrites, and mossy fiber terminals forming synapses onto the spines of neighboring granule cells. These studies suggest that granule cells in p35 knock-out mice contribute to seizure activity by forming an abnormal excitatory feedback circuit.
小儿癫痫与神经元迁移障碍之间存在高度相关性。目前尚不清楚的是,是否存在个体发育异常细胞的内在特征导致癫痫易感性增加,或者这些发育异常细胞是否通过建立改变抑制与兴奋平衡的异常回路来促成癫痫活动。缺乏功能性p35基因的小鼠为解决这些问题提供了一个理想模型,因为这些基因敲除动物不仅表现出异常的神经元迁移,还会出现自发性癫痫发作。通过海马切片的细胞外场记录来表征齿状回的输入-输出关系,结果显示在正常和细胞外钾浓度升高的条件下,野生型和基因敲除小鼠之间几乎没有差异。然而,在存在GABA(A)拮抗剂荷包牡丹碱的情况下,p35基因敲除切片而非野生型切片在受到穿通通路刺激时表现出延长的去极化。野生型与基因敲除小鼠的齿状颗粒细胞的内在特性(即输入电阻、时间常数、动作电位产生)没有显著差异。然而,逆向激活(苔藓纤维刺激)在超过65%的p35基因敲除切片的颗粒细胞中诱发了兴奋性突触反应,而野生型切片中从未观察到这种反应。超微结构分析确定了这种异常兴奋的形态学基础:反复出现的轴突侧支、异常的基底树突以及苔藓纤维终末与相邻颗粒细胞的棘形成突触。这些研究表明,p35基因敲除小鼠中的颗粒细胞通过形成异常的兴奋性反馈回路促成癫痫活动。