Suppr超能文献

从数字化点集重建三维头部几何形状:一项评估研究。

Reconstruction of 3-D head geometry from digitized point sets: an evaluation study.

作者信息

Koikkalainen Juha, Lötjönen Jyrki

机构信息

Laboratory of Biomedical Engineering, Helsinki University of Technology, FIN-02015 HUT, Finland.

出版信息

IEEE Trans Inf Technol Biomed. 2004 Sep;8(3):377-86. doi: 10.1109/titb.2004.834401.

Abstract

In this paper, we evaluate different methods to estimate patient-specific scalp, skull, and brain surfaces from a set of digitized points from the target's scalp surface. The reconstruction problem is treated as a registration problem: An a priori surface model, consisting of the scalp, skull, and brain surfaces, is registered to the digitized surface points. The surface model is generated from segmented magnetic resonance (MR) volume images. We study both affine and free-form deformation (FFD) registration, the use of average models, the averaging of individual registration results, a model selection procedure, and statistical deformation models. The registration algorithms are mainly previously published, and the objective of this paper is to evaluate these methods in this particular application with sparse data. The main interest of this paper is to generate geometric head models for biomedical applications, such as electroencephalography and magnetoencephalographic. However, the methods can also be applied to other anatomical regions and to other application areas. The methods were validated using 15 MR volume images, from which the scalp, skull, and brain were manually segmented. The best results were achieved by averaging the results of the FFD registrations of the database: the mean distance from the manually segmented target surface to a deformed a priori model surface for the studied anatomical objects was 1.68-2.08 mm, depending on the point set used. The results support the use of the evaluated methods for the reconstruction of geometric models in applications with sparse data.

摘要

在本文中,我们评估了多种方法,用于从目标头皮表面的一组数字化点估计特定患者的头皮、颅骨和脑表面。重建问题被视为一个配准问题:一个由头皮、颅骨和脑表面组成的先验表面模型与数字化表面点进行配准。该表面模型由分割后的磁共振(MR)体图像生成。我们研究了仿射和自由形式变形(FFD)配准、平均模型的使用、个体配准结果的平均、模型选择过程以及统计变形模型。配准算法主要是先前已发表的,本文的目的是在这种具有稀疏数据的特定应用中评估这些方法。本文的主要兴趣在于为生物医学应用(如脑电图和脑磁图)生成几何头部模型。然而,这些方法也可应用于其他解剖区域和其他应用领域。使用15幅MR体图像对这些方法进行了验证,其中头皮、颅骨和脑是手动分割的。通过对数据库中FFD配准结果进行平均获得了最佳结果:对于所研究的解剖对象,从手动分割的目标表面到变形后的先验模型表面的平均距离为1.68 - 2.08毫米,具体取决于所使用的点集。结果支持在具有稀疏数据的应用中使用所评估的方法来重建几何模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验