Suppr超能文献

使用概率图谱和水平集方法对新生儿磁共振图像中的头皮和颅骨进行分割。

Segmentation of scalp and skull in neonatal MR images using probabilistic atlas and level set method.

作者信息

Ghadimi S, Abrishami-Moghaddam H, Kazemi K, Grebe R, Goundry-Jouet C, Wallois F

机构信息

Electrical Faculty of K.N.Toosi University, Tehran, Iran.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3060-3. doi: 10.1109/IEMBS.2008.4649849.

Abstract

In this paper, we present a novel automatic algorithm for scalp and skull segmentation in T1-weighted neonatal head MR images. First, the probabilistic scalp and skull atlases are constructed. Second, the scalp outer surface is extracted based on an active mesh method. Third, maximum number of boundary points corresponding to the scalp inner surface is extracted using the constructed scalp probabilistic atlas and a set of knowledge based rules. In the next step, the skull inner surface and maximum number of boundary points of the outer surface are extracted using a priori information of the head anatomy and the constructed skull probabilistic atlas. Finally, the fast sweeping, tagging and level set methods are applied to reconstruct surfaces from the detected points in three-dimensional space. The results of the new segmentation algorithm on MRI data acquired from nine newborns (including three atlas and six test subjects) were compared with manual segmented data provided by an expert radiologist. The average similarity indices for the scalp and skull segmented regions were equal to 89% and 71% for the atlas and 84% and 63% for the test data, respectively.

摘要

在本文中,我们提出了一种用于T1加权新生儿头部磁共振图像中头皮和颅骨分割的新型自动算法。首先,构建概率性头皮和颅骨图谱。其次,基于主动网格法提取头皮外表面。第三,利用构建的头皮概率图谱和一组基于知识的规则提取对应头皮内表面的最大边界点数。在下一步中,利用头部解剖学的先验信息和构建的颅骨概率图谱提取颅骨内表面和外表面的最大边界点数。最后,应用快速扫描、标记和水平集方法从三维空间中检测到的点重建表面。将新分割算法对从九名新生儿(包括三名图谱构建对象和六名测试对象)获取的MRI数据的结果与专业放射科医生提供的手动分割数据进行比较。图谱构建对象的头皮和颅骨分割区域的平均相似性指数分别为89%和71%,测试数据的平均相似性指数分别为84%和63%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验