Babikov Dmitri
Chemistry Department, Marquette University, Wehr Chemistry Building, Milwaukee, WI 53201-1881, USA.
J Chem Phys. 2004 Oct 22;121(16):7577-85. doi: 10.1063/1.1791635.
A model is developed to study the properties of a quantum computer that uses vibrational eigenstates of molecules to implement the quantum information bits and shaped laser pulses to apply the quantum logic gates. Particular emphasis of this study is on understanding how the different factors, such as properties of the molecule and of the pulse, can be used to affect the accuracy of quantum gates in such a system. Optimal control theory and numerical time-propagation of vibrational wave packets are employed to obtain the shaped pulses for the gates NOT and Hadamard transform. The effects of the anharmonicity parameter of the molecule, the target time of the pulse and of the penalty function are investigated. Influence of all these parameters on the accuracy of qubit transformations is observed and explained. It is shown that when all these parameters are carefully chosen the accuracy of quantum gates reaches 99.9%.
开发了一个模型来研究量子计算机的特性,该量子计算机利用分子的振动本征态来实现量子信息比特,并使用整形激光脉冲来应用量子逻辑门。本研究特别强调理解如何利用不同因素,如分子和脉冲的特性,来影响这种系统中量子门的精度。采用最优控制理论和振动波包的数值时间传播来获得用于非门和哈达玛变换门的整形脉冲。研究了分子的非谐性参数、脉冲的目标时间和惩罚函数的影响。观察并解释了所有这些参数对量子比特变换精度的影响。结果表明,当仔细选择所有这些参数时,量子门的精度可达99.9%。