Zhao Meiyu, Babikov Dmitri
Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881, USA.
J Chem Phys. 2007 May 28;126(20):204102. doi: 10.1063/1.2736693.
We developed an efficient approach to study the coherent control of vibrational state-to-state transitions. The approximations employed in our model are valid in the regime of the low vibrational excitation specific to the vibrational quantum computer. Using this approach we explored how the vibrational properties of a two-qubit system affect the accuracy of subpicosecond quantum gates. The optimal control theory and numerical propagation of laser-driven vibrational wave packets were employed. The focus was on understanding the effect of the three anharmonicity parameters of the system. In the three-dimensional anharmonicity parameter space we identified several spots of high fidelity separated by low fidelity planar regions. The seemingly complicated picture is explained in terms of interferences between different state-to-state transitions. Very general analytic relationships between the anharmonicity parameters and the frequencies are derived to describe the observed features. Geometrically, these expressions represent planes in the three-dimensional anharmonicity parameter space. Results of this work should help to choose a suitable candidate molecule for the practical implementation of the vibrational two-qubit system.
我们开发了一种有效的方法来研究振动态到态跃迁的相干控制。我们模型中采用的近似在特定于振动量子计算机的低振动激发区域是有效的。使用这种方法,我们探索了双量子比特系统的振动特性如何影响亚皮秒量子门的精度。采用了最优控制理论和激光驱动振动波包的数值传播。重点是理解系统的三个非谐性参数的影响。在三维非谐性参数空间中,我们识别出了几个高保真度的点,它们被低保真度的平面区域隔开。这种看似复杂的情况可以用不同态到态跃迁之间的干涉来解释。推导了非谐性参数与频率之间非常一般的解析关系来描述所观察到的特征。从几何角度看,这些表达式表示三维非谐性参数空间中的平面。这项工作的结果应该有助于为振动双量子比特系统的实际实现选择合适的候选分子。