Suppr超能文献

脑肿瘤的精准描绘:一种基于胶质瘤中1H-MRSI代谢物病理变化的自动分割方法

Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas.

作者信息

Stadlbauer Andreas, Moser Ewald, Gruber Stephan, Buslei Rolf, Nimsky Christopher, Fahlbusch Rudolf, Ganslandt Oliver

机构信息

Department of Neurosurgery, Neurocenter, University of Erlangen-Nuremberg, Erlangen, Germany.

出版信息

Neuroimage. 2004 Oct;23(2):454-61. doi: 10.1016/j.neuroimage.2004.06.022.

Abstract

In this study, we developed a method to improve the delineation of intrinsic brain tumors based on the changes in metabolism due to tumor infiltration. Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) with a nominal voxel size of 0.45 cm(3) was used to investigate the spatial distribution of choline-containing compounds (Cho), creatine (Cr) and N-acetyl-aspartate (NAA) in brain tumors and normal brain. Ten patients with untreated gliomas were examined on a 1.5 T clinical scanner using a MRSI sequence with PRESS volume preselection. Metabolic maps of Cho, Cr, NAA and Cho/NAA ratios were calculated. Tumors were automatically segmented in the Cho/NAA images based on the assumption of Gaussian distribution of Cho/NAA values in normal brain using a limit for normal brain tissue of the mean + three times the standard deviation. Based on this threshold, an area was calculated which was delineated as pathologic tissue. This area was then compared to areas of hyperintense signal caused by the tumor in T2-weighted MRI, which were determined by a region growing algorithm in combination with visual inspection by two experienced clinicians. The area that was abnormal on (1)H-MRSI exceeded the area delineated via T2 signal changes in the tumor (mean difference 24%) in all cases. For verification of higher sensitivity of our spectroscopic imaging strategy we developed a method for coregistration of MRI and MRSI data sets. Integration of the biochemical information into a frameless stereotactic system allowed biopsy sampling from the brain areas that showed normal T2-weighted signal but abnormal (1)H-MRSI changes. The histological findings showed tumor infiltration ranging from about 4-17% in areas differentiated from normal tissue by (1)H-MRSI only. We conclude that high spatial resolution (1)H-MRSI (nominal voxel size = 0.45 cm(3)) in combination with our segmentation algorithm can improve delineation of tumor borders compared to routine MRI tumor diagnosis.

摘要

在本研究中,我们开发了一种基于肿瘤浸润引起的代谢变化来改善颅内肿瘤轮廓描绘的方法。使用标称体素大小为0.45 cm³的质子磁共振波谱成像(¹H-MRSI)来研究脑肿瘤和正常脑组织中含胆碱化合物(Cho)、肌酸(Cr)和N-乙酰天门冬氨酸(NAA)的空间分布。10例未经治疗的胶质瘤患者在1.5 T临床扫描仪上使用具有PRESS体积预选的MRSI序列进行检查。计算了Cho、Cr、NAA和Cho/NAA比值的代谢图。基于正常脑组织中Cho/NAA值呈高斯分布的假设,使用正常脑组织均值加三倍标准差的限值,在Cho/NAA图像中自动分割肿瘤。基于该阈值,计算出一个被划定为病理组织的区域。然后将该区域与T2加权MRI中肿瘤引起的高信号区域进行比较,后者由区域生长算法结合两名经验丰富的临床医生的目视检查确定。在所有病例中,¹H-MRSI异常的区域均超过了通过肿瘤T2信号变化划定的区域(平均差异24%)。为了验证我们的波谱成像策略具有更高的敏感性,我们开发了一种用于MRI和MRSI数据集配准的方法。将生化信息整合到无框架立体定向系统中,使得能够从T2加权信号正常但¹H-MRSI变化异常的脑区进行活检采样。组织学结果显示,仅通过¹H-MRSI与正常组织区分的区域中,肿瘤浸润范围约为4%-17%。我们得出结论,与常规MRI肿瘤诊断相比,高空间分辨率的¹H-MRSI(标称体素大小 = 0.45 cm³)结合我们的分割算法可以改善肿瘤边界的描绘。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验