Suppr超能文献

一般家系中数量性状连锁检验的功效与稳健性。

Power and robustness of linkage tests for quantitative traits in general pedigrees.

作者信息

Chen Wei-Min, Broman Karl W, Liang Kung-Yee

机构信息

Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Genet Epidemiol. 2005 Jan;28(1):11-23. doi: 10.1002/gepi.20034.

Abstract

There are numerous statistical methods for quantitative trait linkage analysis in human studies. An ideal such method would have high power to detect genetic loci contributing to the trait, would be robust to non-normality in the phenotype distribution, would be appropriate for general pedigrees, would allow the incorporation of environmental covariates, and would be appropriate in the presence of selective sampling. We recently described a general framework for quantitative trait linkage analysis, based on generalized estimating equations, for which many current methods are special cases. This procedure is appropriate for general pedigrees and easily accommodates environmental covariates. In this report, we use computer simulations to investigate the power and robustness of a variety of linkage test statistics built upon our general framework. We also propose two novel test statistics that take account of higher moments of the phenotype distribution, in order to accommodate non-normality. These new linkage tests are shown to have high power and to be robust to non-normality. While we have not yet examined the performance of our procedures in the context of selective sampling via computer simulations, the proposed tests satisfy all of the other qualities of an ideal quantitative trait linkage analysis method.

摘要

在人类研究中,有许多用于数量性状连锁分析的统计方法。一种理想的此类方法应具有高检测能力,能检测出影响该性状的基因位点,对表型分布的非正态性具有稳健性,适用于一般系谱,允许纳入环境协变量,并且在存在选择性抽样的情况下也适用。我们最近基于广义估计方程描述了一个数量性状连锁分析的通用框架,当前许多方法都是该框架的特殊情况。此程序适用于一般系谱,并且能轻松纳入环境协变量。在本报告中,我们使用计算机模拟来研究基于我们通用框架构建的各种连锁检验统计量的功效和稳健性。我们还提出了两种新的检验统计量,它们考虑了表型分布的高阶矩,以适应非正态性。这些新的连锁检验被证明具有高功效且对非正态性具有稳健性。虽然我们尚未通过计算机模拟研究我们的程序在选择性抽样情况下的性能,但所提出的检验满足理想数量性状连锁分析方法的所有其他特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验