Suppr超能文献

四氢生物蝶呤与苯丙氨酸羟化酶结合的热力学特征

Thermodynamic characterization of the binding of tetrahydropterins to phenylalanine hydroxylase.

作者信息

Pey Angel Luis, Thórólfsson Matthías, Teigen Knut, Ugarte Magdalena, Martínez Aurora

机构信息

Contribution from the Centro de Biología Molecular Severo Ochoa, CSIC-UniversidadAutónoma de Madrid, 28049 Madrid, Spain.

出版信息

J Am Chem Soc. 2004 Oct 27;126(42):13670-8. doi: 10.1021/ja047713s.

Abstract

Phenylalanine hydroxylase (PAH) is the key enzyme in the catabolism of L-Phe. The natural cofactor of PAH, 6R-tetrahydrobiopterin (BH4), negatively regulates the enzyme activity in addition to being an essential cosubstrate for catalysis. The analogue 6-methyltetrahydropterin (6M-PH4) is effective in catalysis but does not regulate PAH. Here, the thermodynamics of binding of BH4 and 6M-PH4 to human PAH have been studied by isothermal titration calorimetry. At neutral pH and 25 degrees C, BH4 binds to PAH with higher affinity (Kd = 0.75 +/- 0.18 microM) than 6M-PH4 (Kd = 16.5 +/- 2.7 microM). While BH4 binding is a strongly exothermic process (DeltaH = -11.8 +/- 0.4 kcal/mol) accompanied by an entropic penalty (-TDeltaS = 3.4 +/- 0.4 kcal/mol), 6M-PH4 binding is both enthalpically (DeltaH = -3.3 +/- 0.3 kcal/mol) and entropically (-TDeltaS = -3.2 kcal/mol) driven. No significant changes in binding affinity were observed in the 5-35 degrees C temperature range for both pterins at neutral pH, but the enthalpic contribution increased with temperature rendering a heat capacity change (DeltaCp) of -357 +/- 26 cal/mol/K for BH4 and -63 +/- 12 cal/mol/K for 6M-PH4. Protons do not seem to be taken up or released upon pterin binding. Structure-based energetics calculations applied on the molecular dynamics simulated structures of the complexes suggest that in the case of BH4 binding, the conformational rearrangement of the N-terminal tail of PAH contribute with favorable enthalpic and unfavorable entropic contributions to the intrinsic thermodynamic parameters of binding. The entropic penalty is most probably associated to the reduction of conformational flexibility at the protein level and disappears for the L-Phe activated enzyme. The calculated energetic parameters aid to elucidate the molecular mechanism for cofactor recognition and the regulation of PAH by the dihydroxypropyl side chain of BH4.

摘要

苯丙氨酸羟化酶(PAH)是L-苯丙氨酸分解代谢中的关键酶。PAH的天然辅因子6R-四氢生物蝶呤(BH4)除了是催化反应必不可少的共底物外,还对酶活性具有负调节作用。类似物6-甲基四氢蝶呤(6M-PH4)在催化反应中有效,但不调节PAH。在此,通过等温滴定量热法研究了BH4和6M-PH4与人PAH结合的热力学。在中性pH和25℃条件下,BH4与PAH的结合亲和力(Kd = 0.75±0.18μM)高于6M-PH4(Kd = 16.5±2.7μM)。虽然BH4的结合是一个强烈放热的过程(ΔH = -11.8±0.4 kcal/mol),伴随着熵罚(-TΔS = 3.4±0.4 kcal/mol),但6M-PH4的结合在焓(ΔH = -3.3±0.3 kcal/mol)和熵(-TΔS = -3.2 kcal/mol)方面均有驱动作用。在中性pH条件下,两种蝶呤在5 - 35℃温度范围内结合亲和力均未观察到显著变化,但焓贡献随温度升高而增加,导致BH4的热容变化(ΔCp)为-357±26 cal/mol/K,6M-PH4的热容变化为-63±12 cal/mol/K。蝶呤结合时质子似乎既不被吸收也不被释放。基于结构的能量学计算应用于复合物的分子动力学模拟结构表明,在BH4结合的情况下,PAH N末端尾巴的构象重排对结合的内在热力学参数有有利的焓贡献和不利的熵贡献。熵罚很可能与蛋白质水平构象灵活性的降低有关,而对于L-苯丙氨酸激活的酶则消失。计算得到的能量学参数有助于阐明辅因子识别的分子机制以及BH4二羟丙基侧链对PAH的调节作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验