Suppr超能文献

采用动态共价涂层的胶束电动色谱法结合激光诱导荧光检测用于两种新型生物活性试剂的快速灵敏分析。

Micellar electrokinetic chromatography with laser-induced fluorescence detection for rapid and sensitive analysis of two new bioactive reagents using dynamic covalent coating.

作者信息

Xie Jian Ping, Cui Feng Ling, Chen Xing Guo, Hu Zhi De

机构信息

Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China.

出版信息

J Sep Sci. 2004 Sep;27(13):1115-20. doi: 10.1002/jssc.200401773.

Abstract

A simple, rapid, selective, and sensitive micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence detection (LIF) method was developed, using hexamethyldisilazane (HMDS) as dynamic covalent coating (DCC), for the analysis of two new bioactive agents N-n-hexyl-N'-(sodium p-aminobenzenesulfonate) thiourea (HXPT) and N-n-undecyl-N'-(sodium p-aminobenzenesulfonate) thiourea (UPT) derivatized with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. MEKC methods both not using DCC and using DCC were investigated. In a series of optimization steps, DCC and a running buffer of 20 mM Na2B4O7 + 16 mM SDS + 8% acetonitrile were applied for determination of the derivatives. Linear relationships for HXPT and UPT were obtained in the range of 5 to 100 microM (correlation coefficient: 0.9986 for HXPT, 0.9978 for UPT), and the detection limits for HXPT and UPT were 16.5 and 39.0 ng mL(-1). The sensitivity was improved over that of fluorescence spectroscopy methods. The method was applied to the analysis of the two reagents in lab water waste with recoveries in the range of 95.6-107.5%.

摘要

建立了一种简单、快速、选择性好且灵敏的胶束电动色谱(MEKC)结合激光诱导荧光检测(LIF)的方法,以六甲基二硅氮烷(HMDS)作为动态共价涂层(DCC),用于分析两种新的生物活性剂4-氯-7-硝基苯并-2-恶唑-1,3-二唑衍生化的N-正己基-N'-(对氨基苯磺酸钠)硫脲(HXPT)和N-正十一烷基-N'-(对氨基苯磺酸钠)硫脲(UPT)。研究了不使用DCC和使用DCC的MEKC方法。在一系列优化步骤中,采用DCC和20 mM Na2B4O7 + 16 mM SDS + 8%乙腈的运行缓冲液来测定衍生物。HXPT和UPT在5至100 microM范围内呈线性关系(相关系数:HXPT为0.9986,UPT为0.9978),HXPT和UPT的检测限分别为16.5和39.0 ng mL(-1)。与荧光光谱法相比,灵敏度有所提高。该方法应用于实验室废水样中两种试剂的分析,回收率在95.6 - 107.5%范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验