Arisue Nobuko, Hasegawa Masami, Hashimoto Tetsuo
Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa, Japan.
Mol Biol Evol. 2005 Mar;22(3):409-20. doi: 10.1093/molbev/msi023. Epub 2004 Oct 20.
Extensive studies aiming to establish the structure and root of the Eukaryota tree by phylogenetic analyses of molecular sequences have thus far not resulted in a generally accepted tree. To re-examine the eukaryotic phylogeny using alternative genes, and to obtain a more robust inference for the root of the tree as well as the relationship among major eukaryotic groups, we sequenced the genes encoding isoleucyl-tRNA and valyl-tRNA synthetases, cytosolic-type heat shock protein 90, and the largest subunit of RNA polymerase II from several protists. Combined maximum likelihood analyses of 22 protein-coding genes including the above four genes clearly demonstrated that Diplomonadida and Parabasala shared a common ancestor in the rooted tree of Eukaryota, but only when the fast-evolving sites were excluded from the original data sets. The combined analyses, together with recent findings on the distribution of a fused dihydrofolate reductase-thymidylate synthetase gene, narrowed the possible position of the root of the Eukaryota tree on the branch leading to Opisthokonta or to the common ancestor of Diplomonadida/Parabasala. However, the analyses did not agree with the position of the root located on the common ancestor of Opisthokonta and Amoebozoa, which was argued by Stechmann and Cavalier-Smith [Curr. Biol. 13:R665-666, 2003] based on the presence or absence of a three-gene fusion of the pyrimidine biosynthetic pathway: carbamoyl-phosphate synthetase II, dihydroorotase, and aspartate carbamoyltransferase. The presence of the three-gene fusion recently found in the Cyanidioschyzon merolae (Rhodophyta) genome sequence data supported our analyses against the Stechmann and Cavalier-Smith-rooting in 2003.
通过对分子序列进行系统发育分析来确定真核生物树的结构和根源的广泛研究,迄今为止尚未得出一个被普遍接受的树状图。为了使用替代基因重新审视真核生物的系统发育,并对树的根源以及主要真核生物群体之间的关系获得更可靠的推断,我们对几种原生生物中编码异亮氨酰 - tRNA合成酶、缬氨酰 - tRNA合成酶、胞质型热休克蛋白90以及RNA聚合酶II最大亚基的基因进行了测序。对包括上述四个基因在内的22个蛋白质编码基因进行的联合最大似然分析清楚地表明,双滴虫目和副基体目在真核生物的有根树中共享一个共同祖先,但前提是从原始数据集中排除快速进化的位点。联合分析以及最近关于融合二氢叶酸还原酶 - 胸苷酸合成酶基因分布的发现,缩小了真核生物树根在通向后鞭毛生物或双滴虫目/副基体目共同祖先的分支上的可能位置。然而,这些分析与后鞭毛生物和变形虫门共同祖先处的树根位置不一致,这是斯特克曼和卡瓦利埃 - 史密斯[《当代生物学》13:R665 - 666, 2003]基于嘧啶生物合成途径中三个基因融合(氨甲酰磷酸合成酶II、二氢乳清酸酶和天冬氨酸氨甲酰转移酶)的有无而提出的。最近在梅氏蓝藻(红藻门)基因组序列数据中发现的三个基因融合的存在支持了我们针对2003年斯特克曼和卡瓦利埃 - 史密斯提出的树根位置的分析。