National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
Gene. 2011 Apr 15;475(2):63-78. doi: 10.1016/j.gene.2010.12.001. Epub 2010 Dec 20.
Though the heterotrimeric G-proteins signaling system is one of the best studied in eukaryotes, its provenance and its prevalence outside of model eukaryotes remains poorly understood. We utilized the wealth of sequence data from recently sequenced eukaryotic genomes to uncover robust G-protein signaling systems in several poorly studied eukaryotic lineages such as the parabasalids, heteroloboseans and stramenopiles. This indicated that the Gα subunit is likely to have separated from the ARF-like GTPases prior to the last eukaryotic common ancestor. We systematically identified the structure and sequence features associated with this divergence and found that most of the neomorphic positions in Gα form a ring of residues centered on the nucleotide binding site, several of which are likely to be critical for interactions with the RGS domain for its GAP function. We also present evidence that in some of the potentially early branching eukaryotic lineages, like Trichomonas, Gα is likely to function independently of the Gβγ subunits. We were able to identify previously unknown Gγ subunits in Naegleria, suggesting that the trimeric version was already present by the time of the divergence of the heteroloboseans from the remaining eukaryotes. Evolution of Gα subunits is dominated by several independent lineage-specific expansions (LSEs). In most of these cases there are concomitant, independent LSEs of RGS proteins along with an extraordinary diversification of their domain architectures. The diversity of RGS domains from Naegleria in particular, which has the largest complement of Gα and RGS proteins for any eukaryote, provides new insights into RGS function and evolution. We uncovered a new class of soluble ligand receptors of bacterial origin with RGS domains and an extraordinary diversity of membrane-linked, redox-associated, adhesion-dependent and small molecule-induced G-protein signaling networks that evolved in early-branching eukaryotes, independently of parallel systems in animals. Furthermore, this newly characterized diversity of RGS domains helps in defining their ancestral conserved interfaces with Gα and also those interfaces that are prone to extensive lineage-specific diversification and are thereby responsible for selectivity in Gα-RGS interactions. Several mushrooms show LSEs of Gαs but not of RGS proteins pointing to the probable differentiation of Gαs in conjunction with mating-type diversity. When combined with the characterization of the 7TM receptors (GPCRs), it becomes apparent that, through much of eukaryotic evolution, cells contained both 7TM receptors that acted as GEFs and those as GAPs (with C-terminal RGS domains) for Gαs. Only in some lineages like animals and stramenopiles the 7TM receptors were restricted to GEF only roles, probably due to selection imposed by the rate-constants of the Gαs that underwent lineage-specific expansion in them. In the alveolate lineage the 7TM receptors occur independently of heterotrimeric G-proteins, suggesting the prevalence of G-protein-independent signaling in these organisms.
尽管三聚体 G 蛋白信号系统是真核生物中研究得最好的系统之一,但它的起源及其在非模式真核生物中的普遍性仍知之甚少。我们利用最近测序的真核生物基因组中的大量序列数据,在一些研究较少的真核生物谱系中发现了强大的 G 蛋白信号系统,如原生物、异生生物和鞭毛生物。这表明 Gα 亚基可能在真核生物最后共同祖先之前就已经从 ARF 样 GTP 酶中分离出来了。我们系统地鉴定了与这种分化相关的结构和序列特征,并发现 Gα 中的大多数新形成的位置形成了一个以核苷酸结合位点为中心的残基环,其中几个可能对与 RGS 结构域的相互作用及其 GAP 功能至关重要。我们还提供了证据表明,在一些潜在的早期分支的真核生物谱系中,如 Trichomonas,Gα 可能独立于 Gβγ 亚基发挥作用。我们能够在 Naegleria 中鉴定出以前未知的 Gγ 亚基,这表明三聚体版本在异生生物与其余真核生物分化时就已经存在。Gα 亚基的进化主要由几个独立的谱系特异性扩张(LSE)驱动。在大多数情况下,RGS 蛋白也伴随着独立的、独立的 LSE,其结构域架构也发生了非凡的多样化。特别是 Naegleria 的 RGS 结构域的多样性,为 RGS 功能和进化提供了新的见解,它拥有最大的 Gα 和 RGS 蛋白的任何真核生物的补充。我们发现了一类新的具有 RGS 结构域的细菌来源的可溶性配体受体,以及一种非凡的多样性的膜相关、氧化还原相关、粘附依赖和小分子诱导的 G 蛋白信号网络,这些网络在早期分支的真核生物中独立于动物中的平行系统进化而来。此外,这种新表征的 RGS 结构域多样性有助于定义其与 Gα 的祖先保守界面,以及那些易于发生广泛的谱系特异性多样化的界面,从而负责 Gα-RGS 相互作用的选择性。一些蘑菇表现出 Gαs 的 LSE,但没有 RGS 蛋白的 LSE,这表明 Gαs 可能与交配型多样性一起分化。当与 7TM 受体(GPCR)的特征相结合时,很明显,在真核生物进化的大部分过程中,细胞都含有既能作为 GEF 又能作为 GAP(带有 C 末端 RGS 结构域)的 7TM 受体。只有在一些谱系中,如动物和鞭毛生物,7TM 受体才仅限于 GEF 作用,这可能是由于在这些谱系中经历了谱系特异性扩张的 Gαs 的速率常数所带来的选择。在类囊体生物谱系中,7TM 受体独立于三聚体 G 蛋白存在,这表明这些生物中存在 G 蛋白独立的信号转导。