Fujii Tadashi, Narikawa Tatsuya, Takeda Koji, Kato Junichi
Bioresource Laboratories, Mercian Corporation, Iwata, Shizuoka 438-0078, Japan.
Biosci Biotechnol Biochem. 2004 Oct;68(10):2171-7. doi: 10.1271/bbb.68.2171.
Biotransformation using alkane-oxidizing bacteria or their alkane hydroxylase (AH) systems have been little studied at the molecular level. We have cloned and sequenced genes from Gordonia sp. TF6 encoding an AH system, alkB2 (alkane 1-monooxygenase), rubA3 (rubredoxin), rubA4 (rubredoxin), and rubB (rubredoxin reductase). When expressed in Escherichia coli, these genes allowed the construction of biotransformation systems for various alkanes. Normal alkanes with 5 to 13 carbons were good substrates for this biotransformation, and oxidized to their corresponding 1-alkanols. Surprisingly, cycloalkanes with 5 to 8 carbons were oxidized to their corresponding cycloalkanols as well. This is the first study to achieve biotransformation of alkanes using the E. coli expressing the minimum component genes of the AH system. Our biotransformation system has facilitated assays and analysis leading to improvement of AH systems, and has indicated a cycloalkane oxidation pathway in microorganisms for the first time.
利用烷烃氧化细菌或其烷烃羟化酶(AH)系统进行生物转化在分子水平上的研究很少。我们已经从戈登氏菌属TF6中克隆并测序了编码AH系统的基因alkB2(烷烃1-单加氧酶)、rubA3(红素氧还蛋白)、rubA4(红素氧还蛋白)和rubB(红素氧还蛋白还原酶)。当这些基因在大肠杆菌中表达时,可构建用于各种烷烃的生物转化系统。含有5至13个碳原子的正构烷烃是这种生物转化的良好底物,并被氧化为相应的1-链烷醇。令人惊讶的是,含有5至8个碳原子的环烷烃也被氧化为相应的环烷醇。这是首次利用表达AH系统最小组成基因的大肠杆菌实现烷烃生物转化的研究。我们的生物转化系统促进了相关测定和分析,有助于改进AH系统,并且首次揭示了微生物中环烷烃的氧化途径。