Suppr超能文献

母体呋喃(一种食品毒物)的起源及形成机制途径

Origin and mechanistic pathways of formation of the parent furan--a food toxicant.

作者信息

Perez Locas Carolina, Yaylayan Varoujan A

机构信息

Department of Food Science and Agricultural Chemistry, McGill University, 21, 111 Lakeshore, Ste. Anne de Bellevue, Quebec, Canada.

出版信息

J Agric Food Chem. 2004 Nov 3;52(22):6830-6. doi: 10.1021/jf0490403.

Abstract

Studies performed on model systems using pyrolysis-GC-MS analysis and (13)C-labeled sugars and amino acids in addition to ascorbic acid have indicated that certain amino acids such as serine and cysteine can degrade and produce acetaldehyde and glycolaldehyde that can undergo aldol condensation to produce furan after cyclization and dehydration steps. Other amino acids such as aspartic acid, threonine, and alpha-alanine can degrade and produce only acetaldehyde and thus need sugars as a source of glycolaldehyde to generate furan. On the other hand, monosaccharides are also known to undergo degradation to produce both acetaldehyde and glycolaldehyde; however, (13)C-labeling studies have revealed that hexoses in general will mainly degrade into the following aldotetrose derivatives to produce the parent furan-aldotetrose itself, incorporating the C3-C4-C5-C6 carbon chain of glucose (70%); 2-deoxy-3-ketoaldotetrose; incorporating the C1-C2-C3-C4 carbon chain of glucose (15%); and 2-deoxyaldotetrose, incorporating the C2-C3-C4-C5 carbon chain of glucose (15%). Furthermore, it was also proposed that under nonoxidative conditions of pyrolysis, ascorbic acid can generate the 2-deoxyaldotetrose moiety, a direct precursor of the parent furan. In addition, 4-hydroxy-2-butenal-a known decomposition product of lipid peroxidation-was proposed as a precursor of furan originating from polyunsaturated fatty acids. Among the model systems studied, ascorbic acid had the highest potential to produce furan, followed by glycolaldehyde/alanine > erythrose > ribose/serine > sucrose/serine > fructose/serine > glucose/cysteine.

摘要

除了抗坏血酸外,利用热解气相色谱 - 质谱分析以及(13)C标记的糖类和氨基酸对模型系统进行的研究表明,某些氨基酸,如丝氨酸和半胱氨酸,可降解并产生乙醛和乙醇醛,这些物质在环化和脱水步骤后可通过羟醛缩合生成呋喃。其他氨基酸,如天冬氨酸、苏氨酸和α - 丙氨酸,只能降解产生乙醛,因此需要糖类作为乙醇醛的来源以生成呋喃。另一方面,已知单糖也会降解产生乙醛和乙醇醛;然而,(13)C标记研究表明,一般来说己糖主要会降解为以下醛糖四糖衍生物,以生成母体呋喃 - 醛糖四糖本身,其中包含葡萄糖的C3 - C4 - C5 - C6碳链(70%);2 - 脱氧 - 3 - 酮醛糖四糖,包含葡萄糖的C1 - C2 - C3 - C4碳链(15%);以及2 - 脱氧醛糖四糖,包含葡萄糖的C2 - C3 - C4 - C5碳链(15%)。此外,还提出在热解的非氧化条件下,抗坏血酸可生成2 - 脱氧醛糖四糖部分,这是母体呋喃的直接前体。另外,4 - 羟基 - 2 - 丁烯醛(一种已知的脂质过氧化分解产物)被认为是源自多不饱和脂肪酸的呋喃的前体。在所研究的模型系统中,抗坏血酸产生呋喃的潜力最高,其次是乙醇醛/丙氨酸>赤藓糖>核糖/丝氨酸>蔗糖/丝氨酸>果糖/丝氨酸>葡萄糖/半胱氨酸。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验