Williamson Scott, Perry Steven M, Bustamante Carlos D, Orive Maria E, Stearns Miles N, Kelly John K
Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA.
Mol Biol Evol. 2005 Mar;22(3):456-68. doi: 10.1093/molbev/msi029. Epub 2004 Oct 27.
Within-patient HIV populations evolve rapidly because of a high mutation rate, short generation time, and strong positive selection pressures. Previous studies have identified "consistent patterns" of viral sequence evolution. Just before HIV infection progresses to AIDS, evolution seems to slow markedly, and the genetic diversity of the viral population drops. This evolutionary slowdown could be caused either by a reduction in the average viral replication rate or because selection pressures weaken with the collapse of the immune system. The former hypothesis (which we denote "cellular exhaustion") predicts a simultaneous reduction in both synonymous and nonsynonymous evolution, whereas the latter hypothesis (denoted "immune relaxation") predicts that only nonsynonymous evolution will slow. In this paper, we present a set of statistical procedures for distinguishing between these alternative hypotheses using DNA sequences sampled over the course of infection. The first component is a new method for estimating evolutionary rates that takes advantage of the temporal information in longitudinal DNA sequence samples. Second, we develop a set of probability models for the analysis of evolutionary rates in HIV populations in vivo. Application of these models to both synonymous and nonsynonymous evolution affords a comparison of the cellular-exhaustion and immune-relaxation hypotheses. We apply the procedures to longitudinal data sets in which sequences of the env gene were sampled over the entire course of infection. Our analyses (1) statistically confirm that an evolutionary slowdown occurs late in infection, (2) strongly support the immune-relaxation hypothesis, and (3) indicate that the cessation of nonsynonymous evolution is associated with disease progression.
由于高突变率、短世代时间和强大的正选择压力,患者体内的艾滋病毒群体进化迅速。先前的研究已经确定了病毒序列进化的“一致模式”。就在艾滋病毒感染发展为艾滋病之前,进化似乎明显放缓,病毒群体的遗传多样性下降。这种进化放缓可能是由于平均病毒复制率降低,或者是由于随着免疫系统崩溃选择压力减弱。前一种假设(我们称之为“细胞耗竭”)预测同义进化和非同义进化同时减少,而后者假设(称为“免疫松弛”)预测只有非同义进化会放缓。在本文中,我们提出了一组统计程序,用于使用感染过程中采样的DNA序列区分这些替代假设。第一个组成部分是一种利用纵向DNA序列样本中的时间信息估计进化速率的新方法。其次,我们开发了一组概率模型,用于分析体内艾滋病毒群体的进化速率。将这些模型应用于同义进化和非同义进化,可以比较细胞耗竭和免疫松弛假设。我们将这些程序应用于纵向数据集,其中env基因的序列在整个感染过程中进行了采样。我们的分析(1)从统计学上证实感染后期会出现进化放缓,(2)强烈支持免疫松弛假设,(3)表明非同义进化的停止与疾病进展有关。