Leipzig Nic D, Athanasiou K A Kyriacos A
Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, TX 77251, USA.
J Biomech. 2005 Jan;38(1):77-85. doi: 10.1016/j.jbiomech.2004.03.013.
The study of single cell mechanics offers a valuable tool for understanding cellular milieus. Specific knowledge of chondrocyte biomechanics could lead to elucidation of disease etiologies and the biomechanical factors most critical to stimulating regenerative processes in articular cartilage. Recent studies in our laboratory have suggested that it may be acceptable to approximate the shape of a single chondrocyte as a disc. This geometry is easily utilized for generating models of unconfined compression. In this study, three continuum mechanics models of increasing complexity were formulated and used to fit unconfined compression creep data. Creep curves were obtained from middle/deep zone chondrocytes (n = 15) and separately fit using the three continuum models. The linear elastic solid model yielded a Young's modulus of 2.55+/-0.85 kPa. The viscoelastic model (adapted from the Kelvin model) generated an instantaneous modulus of 2.47+/-0.85 kPa, a relaxed modulus of 1.48+/-0.35 kPa, and an apparent viscosity of 1.92+/-1.80 kPa-s. Finally, a linear biphasic model produced an aggregate modulus of 2.58+/-0.87 kPa, a permeability of 2.57 x 10(-12)+/-3.09 m(4)/N-s, and a Poisson's ratio of 0.069+/-0.021. The results of this study demonstrate that similar values for the cell modulus can be obtained from three models of increasing complexity. The elastic model provides an easy method for determining the cell modulus, however, the viscoelastic and biphasic models generate additional material properties that are important for characterizing the transient response of compressed chondrocytes.
单细胞力学研究为理解细胞微环境提供了一个有价值的工具。软骨细胞生物力学的具体知识可能有助于阐明疾病病因以及对刺激关节软骨再生过程最为关键的生物力学因素。我们实验室最近的研究表明,将单个软骨细胞的形状近似为圆盘可能是可行的。这种几何形状便于用于生成无侧限压缩模型。在本研究中,构建了三个复杂度递增的连续介质力学模型,并用于拟合无侧限压缩蠕变数据。蠕变曲线取自中/深层区域的软骨细胞(n = 15),并分别使用这三个连续介质模型进行拟合。线性弹性固体模型得出的杨氏模量为2.55±0.85 kPa。粘弹性模型(改编自开尔文模型)产生的瞬时模量为2.47±0.85 kPa,松弛模量为1.48±0.35 kPa,表观粘度为1.92±1.80 kPa·s。最后,线性双相模型产生的总模量为2.58±0.87 kPa,渗透率为2.57×10⁻¹²±3.09 m⁴/N·s,泊松比为0.069±0.021。本研究结果表明,从三个复杂度递增的模型中可以获得相似的细胞模量值。弹性模型提供了一种确定细胞模量的简便方法,然而,粘弹性和双相模型产生了额外的材料特性,这些特性对于表征压缩软骨细胞的瞬态响应很重要。