Suppr超能文献

一种用于景观遗传学的空间统计模型。

A spatial statistical model for landscape genetics.

作者信息

Guillot Gilles, Estoup Arnaud, Mortier Frédéric, Cosson Jean François

机构信息

Unité de Mathématiques et Informatique Appliquées, INRA-INAPG-ENGREF, Paris, France 75231.

出版信息

Genetics. 2005 Jul;170(3):1261-80. doi: 10.1534/genetics.104.033803. Epub 2004 Nov 1.

Abstract

Landscape genetics is a new discipline that aims to provide information on how landscape and environmental features influence population genetic structure. The first key step of landscape genetics is the spatial detection and location of genetic discontinuities between populations. However, efficient methods for achieving this task are lacking. In this article, we first clarify what is conceptually involved in the spatial modeling of genetic data. Then we describe a Bayesian model implemented in a Markov chain Monte Carlo scheme that allows inference of the location of such genetic discontinuities from individual geo-referenced multilocus genotypes, without a priori knowledge on populational units and limits. In this method, the global set of sampled individuals is modeled as a spatial mixture of panmictic populations, and the spatial organization of populations is modeled through the colored Voronoi tessellation. In addition to spatially locating genetic discontinuities, the method quantifies the amount of spatial dependence in the data set, estimates the number of populations in the studied area, assigns individuals to their population of origin, and detects individual migrants between populations, while taking into account uncertainty on the location of sampled individuals. The performance of the method is evaluated through the analysis of simulated data sets. Results show good performances for standard data sets (e.g., 100 individuals genotyped at 10 loci with 10 alleles per locus), with high but also low levels of population differentiation (e.g., FST<0.05). The method is then applied to a set of 88 individuals of wolverines (Gulo gulo) sampled in the northwestern United States and genotyped at 10 microsatellites.

摘要

景观遗传学是一门新兴学科,旨在提供有关景观和环境特征如何影响种群遗传结构的信息。景观遗传学的首要关键步骤是对种群间遗传间断的空间检测和定位。然而,目前缺乏实现这一任务的有效方法。在本文中,我们首先阐明了遗传数据空间建模在概念上所涉及的内容。然后我们描述了一种在马尔可夫链蒙特卡罗方案中实现的贝叶斯模型,该模型允许从个体地理参考多位点基因型推断此类遗传间断的位置,而无需关于种群单位和界限的先验知识。在这种方法中,将全局采样个体集建模为随机交配种群的空间混合体,并通过彩色Voronoi镶嵌对种群的空间组织进行建模。除了在空间上定位遗传间断外,该方法还量化了数据集中的空间依赖量,估计研究区域内的种群数量,将个体分配到其起源种群,并检测种群间的个体迁移者,同时考虑采样个体位置的不确定性。通过对模拟数据集的分析评估了该方法的性能。结果表明,对于标准数据集(例如,100个个体在10个位点进行基因分型,每个位点有10个等位基因),无论种群分化程度高低(例如,FST<0.05),该方法都具有良好的性能。然后将该方法应用于在美国西北部采样的88只狼獾(貂熊)个体,并对其10个微卫星进行基因分型。

相似文献

1
A spatial statistical model for landscape genetics.一种用于景观遗传学的空间统计模型。
Genetics. 2005 Jul;170(3):1261-80. doi: 10.1534/genetics.104.033803. Epub 2004 Nov 1.
10
Inference of population structure under a Dirichlet process model.狄利克雷过程模型下的群体结构推断
Genetics. 2007 Apr;175(4):1787-802. doi: 10.1534/genetics.106.061317. Epub 2007 Jan 21.

引用本文的文献

10

本文引用的文献

1
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.估计用于群体结构分析的F统计量
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
3
BAPS 2: enhanced possibilities for the analysis of genetic population structure.BAPS 2:分析遗传群体结构的更多可能性
Bioinformatics. 2004 Oct 12;20(15):2363-9. doi: 10.1093/bioinformatics/bth250. Epub 2004 Apr 8.
4
Can assignment tests measure dispersal?分配测试能测量扩散情况吗?
Mol Ecol. 2004 Mar;13(3):551-61. doi: 10.1046/j.1365-294x.2004.2081.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验