Suppr超能文献

一种用于定量基因表达谱分析的新型高性能随机阵列平台。

A novel, high-performance random array platform for quantitative gene expression profiling.

作者信息

Kuhn Kenneth, Baker Shawn C, Chudin Eugene, Lieu Minh-Ha, Oeser Steffen, Bennett Holly, Rigault Philippe, Barker David, McDaniel Timothy K, Chee Mark S

机构信息

Illumina, Inc., San Diego, California 92121, USA.

出版信息

Genome Res. 2004 Nov;14(11):2347-56. doi: 10.1101/gr.2739104.

Abstract

We have developed a new microarray technology for quantitative gene-expression profiling on the basis of randomly assembled arrays of beads. Each bead carries a gene-specific probe sequence. There are multiple copies of each sequence-specific bead in an array, which contributes to measurement precision and reliability. We optimized the system for specific and sensitive analysis of mammalian RNA, and using RNA controls of defined concentration, obtained the following estimates of system performance: specificity of 1:250,000 in mammalian poly(A(+)) mRNA; limit of detection 0.13 pM; dynamic range 3.2 logs; and sufficient precision to detect 1.3-fold differences with 95% confidence within the dynamic range. Measurements of expression differences between human brain and liver were validated by concordance with quantitative real-time PCR (R(2) = 0.98 for log-transformed ratios, and slope of the best-fit line = 1.04, for 20 genes). Quantitative performance was further verified using a mouse B- and T-cell model system. We found published reports of B- or T-cell-specific expression for 42 of 59 genes that showed the greatest differential expression between B- and T-cells in our system. All of the literature observations were concordant with our results. Our experiments were carried out on a 96-array matrix system that requires only 100 ng of input RNA and uses standard microtiter plates to process samples in parallel. Our technology has advantages for analyzing multiple samples, is scalable to all known genes in a genome, and is flexible, allowing the use of standard or custom probes in an array.

摘要

我们基于随机组装的微珠阵列开发了一种用于定量基因表达谱分析的新型微阵列技术。每个微珠携带一个基因特异性探针序列。阵列中每个序列特异性微珠都有多个拷贝,这有助于提高测量的精度和可靠性。我们对该系统进行了优化,以实现对哺乳动物RNA的特异性和灵敏分析,并使用已知浓度的RNA对照,获得了以下系统性能评估结果:在哺乳动物多聚腺苷酸(+)mRNA中的特异性为1:250,000;检测限为0.13 pM;动态范围为3.2个对数;并且在动态范围内具有足够的精度,能够以95%的置信度检测到1.3倍的差异。通过与定量实时PCR结果的一致性验证了人脑和肝脏之间表达差异的测量结果(对于20个基因,对数转换后的比率R(2)= 0.98,最佳拟合线的斜率 = 1.04)。使用小鼠B细胞和T细胞模型系统进一步验证了定量性能。我们发现,在我们的系统中,59个在B细胞和T细胞之间表现出最大差异表达的基因中,有42个基因有关于B细胞或T细胞特异性表达的已发表报告。所有文献观察结果都与我们的结果一致。我们的实验是在一个96阵列矩阵系统上进行的,该系统仅需要100 ng的输入RNA,并使用标准微孔板并行处理样品。我们的技术在分析多个样品方面具有优势,可扩展到基因组中的所有已知基因,并且具有灵活性,允许在阵列中使用标准或定制探针。

相似文献

引用本文的文献

3
Approaches in Gene Coexpression Analysis in Eukaryotes.真核生物基因共表达分析方法
Biology (Basel). 2022 Jul 6;11(7):1019. doi: 10.3390/biology11071019.
9
A Synthetic Kinome Microarray Data Generator.一种合成激酶组微阵列数据生成器。
Microarrays (Basel). 2015 Oct 16;4(4):432-53. doi: 10.3390/microarrays4040432.

本文引用的文献

1
Highly parallel SNP genotyping.高度并行单核苷酸多态性基因分型
Cold Spring Harb Symp Quant Biol. 2003;68:69-78. doi: 10.1101/sqb.2003.68.69.
3
Decoding randomly ordered DNA arrays.解码随机排序的DNA阵列。
Genome Res. 2004 May;14(5):870-7. doi: 10.1101/gr.2255804. Epub 2004 Apr 12.
4
The International HapMap Project.国际人类基因组单体型图计划
Nature. 2003 Dec 18;426(6968):789-96. doi: 10.1038/nature02168.
7
Significance and statistical errors in the analysis of DNA microarray data.DNA微阵列数据分析中的显著性与统计误差
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12975-8. doi: 10.1073/pnas.162468199. Epub 2002 Sep 16.
10
Profiling alternative splicing on fiber-optic arrays.在光纤阵列上分析可变剪接
Nat Biotechnol. 2002 Apr;20(4):353-8. doi: 10.1038/nbt0402-353.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验