Hillary R M, Bees M A
Renewable Resources Assessment Group, Department of Environmental Science and Technology, Imperial College, London SW7 2BP, UK.
Bull Math Biol. 2004 Nov;66(6):1909-31. doi: 10.1016/j.bulm.2004.05.006.
The apparent synchronisation of spatially discrete populations is a well documented phenomenon. However, it is not clear what the governing mechanisms are for this synchrony, and whether they are robust over a range of environmental conditions and patch specific population dynamic behaviours. In this paper, we explore two (possibly interacting) modes of coupling, and investigate their theoretically discernible, and perhaps even experimentally measurable, signatures. To aid us in this investigation we employ a planktonic example system, with direct application to plankton patchiness. Furthermore, we address the role of chaos in complex spatio-temporal dynamics; we find that chaos associated with funnel attractors can play a distinguished role, over dynamics less sensitive to small variations, in being more susceptible to generalised synchronisation (such as phase synchronisation) in the presence of small local parameter variation. This is in contrast to the case for coupled systems with identical dynamics, and suggests that non-identically coupled systems are more vulnerable to global extinction events when exhibiting funnel-type chaotic dynamics.
空间离散种群的明显同步是一个有充分文献记载的现象。然而,目前尚不清楚这种同步的控制机制是什么,以及它们在一系列环境条件和斑块特定种群动态行为下是否稳健。在本文中,我们探讨了两种(可能相互作用的)耦合模式,并研究了它们在理论上可辨别的,甚至可能在实验中可测量的特征。为了辅助这项研究,我们采用了一个浮游生物示例系统,并直接应用于浮游生物斑块化现象。此外,我们探讨了混沌在复杂时空动态中的作用;我们发现,与漏斗吸引子相关的混沌在对小变化不太敏感的动态过程中,在存在小的局部参数变化时更容易出现广义同步(如相位同步)方面可以发挥显著作用。这与具有相同动态的耦合系统的情况形成对比,表明当表现出漏斗型混沌动态时,非相同耦合系统更容易受到全球灭绝事件的影响。