Rissanen Tuomas T, Rutanen Juha, Ylä-Herttuala Seppo
Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute, Kuopio University, Kuopio, Finland.
Adv Genet. 2004;52:117-64. doi: 10.1016/S0065-2660(04)52004-7.
Therapeutic vascular growth in the treatment of peripheral and myocardial ischemia has not yet fulfilled its expectations in clinical trials. Randomized, double-blinded placebo-controlled trials have predominantly shown the safety and feasibility but not the clear-cut clinically relevant efficacy of angiogenic gene or recombinant growth factor therapy. It is likely that growth factor levels achieved with single injections of recombinant protein or naked plasmid DNA are too low to induce any relevant angiogenic effects. Also, the route of administration of gene transfer vectors has not been optimal in many cases leading to low gene-transfer efficacy. Animal experiments using intramuscular or intramyocardial injections of adenovirus encoding vascular endothelial growth factor (VEGF, VEGF-A), the mature form of VEGF-D, and fibroblast growth factors (FGF-1, -2, and -4) have shown high angiogenic efficacy. Adenoviral overexpression of VEGF receptor-2 ligands, VEGF-A and the mature form of VEGF-D, enlarge the preexisting capillaries in skeletal muscle and myocardium via nitric oxide(NO)-mediated mechanisms and via proliferation of both endothelial cells and pericytes, resulting in markedly increased tissue perfusion. VEGF also enhances collateral growth, which is probably secondary to increased peripheral capillary blood flow and shear stress. As a side effect of VEGF overexpression and rapid microvessel enlargement, vascular permeability increases and may result in substantial tissue edema and pericardial effusion in the heart. Because of the transient adenoviral gene expression, the majority of angiogenic effects and side effects return to baseline by 2 weeks after the gene transfer. In contrast, VEGF overexpression lasting over 4 weeks has been shown to induce the growth of a persistent vascular network in preclinical models. To improve efficacy, the choice of the vascular growth factor, gene transfer vector, and route of administration should be optimized in future clinical trials. This review is focused on these issues.
治疗性血管生成在治疗外周和心肌缺血方面尚未在临床试验中达到预期效果。随机、双盲、安慰剂对照试验主要显示了血管生成基因或重组生长因子治疗的安全性和可行性,但未显示出明确的临床相关疗效。单次注射重组蛋白或裸质粒DNA所达到的生长因子水平可能过低,无法诱导任何相关的血管生成效应。此外,在许多情况下,基因传递载体的给药途径并非最佳,导致基因传递效率低下。使用腺病毒编码血管内皮生长因子(VEGF,VEGF-A)、成熟形式的VEGF-D和成纤维细胞生长因子(FGF-1、-2和-4)进行肌肉内或心肌内注射的动物实验显示出高血管生成疗效。VEGF受体-2配体VEGF-A和成熟形式的VEGF-D的腺病毒过表达通过一氧化氮(NO)介导的机制以及内皮细胞和周细胞的增殖,使骨骼肌和心肌中已有的毛细血管扩大,导致组织灌注显著增加。VEGF还可促进侧支血管生长,这可能继发于外周毛细血管血流量增加和剪切应力增加。作为VEGF过表达和微血管快速扩大的副作用,血管通透性增加,可能导致心脏出现大量组织水肿和心包积液。由于腺病毒基因表达是短暂的,大多数血管生成效应和副作用在基因转移后2周恢复到基线水平。相比之下,在临床前模型中,持续超过4周的VEGF过表达已被证明可诱导持久血管网络的生长。为了提高疗效,在未来的临床试验中应优化血管生长因子、基因传递载体和给药途径的选择。本综述重点关注这些问题。